Synthesis 2015; 47(14): 2055-2062
DOI: 10.1055/s-0034-1380550
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of 4-(Dimethylamino)quinazoline via Direct Amination of Quinazolin-4(3H)-one Using N,N-Dimethylformamide as a Nitrogen Source at Room Temperature

Xin Chen
b   Key Laboratory of Green Chemistry, Jiangxi Province College of Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. of China
,
Qin Yang
b   Key Laboratory of Green Chemistry, Jiangxi Province College of Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. of China
,
Yirong Zhou
b   Key Laboratory of Green Chemistry, Jiangxi Province College of Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. of China
,
Zhihong Deng
b   Key Laboratory of Green Chemistry, Jiangxi Province College of Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. of China
,
Xuechun Mao
b   Key Laboratory of Green Chemistry, Jiangxi Province College of Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. of China
,
Yiyuan Peng*
a   National Research Center for Carbohydrate Synthesis and Key Laboratory of Small Functional Organic Molecules, Ministry of Education, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. of China   Email: yypeng@jxnu.edu.cn   Email: yiyuanpeng@yahoo.com
b   Key Laboratory of Green Chemistry, Jiangxi Province College of Chemistry, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 17 January 2015

Accepted after revision: 18 March 2015

Publication Date:
22 April 2015 (online)


Abstract

An efficient direct amination of quinazolin-4(3H)-ones using N,N-dimethylformamide as a nitrogen source is described that affords the corresponding 4-(dimethylamino)quinazolines in high yields. This transformation proceeds through efficient 4-toluenesulfonyl chloride mediated C–OH bond activation at room temperature.

Supporting Information

 
  • References

    • 1a Havera HJ, Vidrio HJ. J. Med. Chem. 1979; 22: 1548
    • 1b Hori M, Iemura R, Hara H, Ozaki A, Sukamoto T, Ohtaka H. Chem. Pharm. Bull. 1990; 38: 681
    • 1c Liverton NJ, Armstrong DJ, Claremon DA, Remy DC, Bardwin JJ, Lynch RJ, Zhang G, Gould RJ. Bioorg. Med. Chem. Lett. 1998; 8: 483
    • 1d Kung PP, Casper MD, Cook KL, Wilson-Lingardo L, Risen LM, Vickers TA, Ranken R, Blyn LB, Wyatt JR, Cook PD, Ecker DJ. J. Med. Chem. 1999; 42: 4705
    • 1e Chao Q, Deng L, Shih H, Leoni LM, Genini D, Carson DA, Cottam HB. J. Med. Chem. 1999; 42: 3860
    • 1f Brunton SA, Stibbard JH. A, Rubin LL, Kruse LI, Guicherit OM, Boyd EA, Price S. J. Med. Chem. 2008; 51: 1108
    • 2a Barlaam B, Ballard P, Bradbury RH, Ducray R, Germain H, Hickinson DM, Hudson K, Kettle JG, Klinowska T, Magnien F, Ogilvie DJ, Olivier A, Pearson SE, Scott JS, Suleman A, Trigwell CB, Vautier M, Whittaker RD, Wood R. Bioorg. Med. Chem. Lett. 2008; 18: 674
    • 2b Smits RA, de Esch IJ. P, Zuiderveld OP, Broeker J, Sansuk K, Guaita E, Coruzzi G, Adami M, Haaksma E, Leurs R. J. Med. Chem. 2008; 51: 7855
    • 2c Sirisoma N, Pervin A, Zhang H, Jiang SC, Willardsen JA, Anderson MB, Mather G, Pleiman CM, Kasibhatla S, Tseng B, Drewe J, Cai SX. J. Med. Chem. 2009; 52: 2341
    • 2d Iino T, Sasaki Y, Bamba M, Mitsuya M, Ohno A, Kamata K, Hosaka H, Maruki H, Futamura M, Yoshimoto R, Ohyama S, Sasaki K, Chiba M, Ohtake N, Nagata Y, Eiki J, Nishimura T. Bioorg. Med. Chem. Lett. 2009; 19: 5531
  • 3 Barker AJ, Gibson KH, Grundy W, Godfrey AA, Barlow JJ, Healy MP, Woodburn JR, Ashton SE, Curry BJ, Scarlett L, Henthorn L, Richards L. Bioorg. Med. Chem. Lett. 2001; 11: 1911
    • 4a Zhang YD, Xu CL, Houghten RA, Yu YP. J. Comb. Chem. 2007; 9: 9
    • 4b Wissner A, Floyd MB, Johnson BD, Fraser H, Ingalls C, Nittoli T, Dushin RG, Discafani C, Nilakantan R, Marini J, Ravi M, Cheung K, Tan XZ, Musto S, Annable T, Siegel MM, Loganzo F. J. Med. Chem. 2005; 48: 7560
    • 4c Hennequin LF, Allen J, Breed J, Curwen J, Fennell M, Green TP, Brempt CL. V. D, Morgentin R, Norman RA, Olivier A, Otterbein L, Ple PA, Warin N, Costello G. J. Med. Chem. 2006; 49: 6465
    • 5a Kumar R, Van der Eycken EV. Chem. Soc. Rev. 2013; 42: 1121 ; and references therein
    • 5b Kang F.-A, Sui Z, Murray WV. J. Am. Chem. Soc. 2008; 130: 11300
    • 5c Luo Y, Wu J. Tetrahedron Lett. 2009; 50: 2103
    • 5d Luo Y, Wu J. Tetrahedron 2009; 65: 6810
    • 5e Hu Y, Ding Q, Ye S, Peng Y, Wu J. Tetrahedron 2011; 67: 7258
    • 5f Qiu G, Huang P, Yang Q, Lu H, Xu JS, Deng Z, Zhang M, Peng YY. Synthesis 2013; 45: 3131
  • 6 Lockman JW, Klimova Y, Anderson MB, Willardsen JA. Synth. Commun. 2012; 42: 1715
  • 7 Peng Y.-Y, Wen Y, Mao X, Qiu G. Tetrahedron Lett. 2009; 50: 2405
  • 8 Peng Y, Qiu G, Yang Q, Yuan J, Deng Z. Synthesis 2012; 44:  1237
    • 9a Muzart J. Tetrahedron 2009; 65: 8313
    • 9b Ding S, Jiao N. Angew. Chem. Int. Ed. 2012; 51: 9226
    • 10a Kadish KM, Han BC, Franzen MM, Araullo-McAdams C. J. Am. Chem. Soc. 1990; 112: 8364
    • 10b Agarwal A, Chauhan PM. S. Synth. Commun. 2004; 34: 2925
    • 10c Watanabe T, Tanaka Y, Sekiya K, Akita Y, Ohta A. Synthesis 1980; 39
    • 10d D’Amico JJ, Webster ST, Campbell RH, Twine CE. J. Org. Chem. 1965; 30: 3618
    • 10e Čechová L, Jansa P, Šála M, Dračínský M, Holý A, Janeba Z. Tetrahedron 2011; 67: 866
    • 10f Samadi A, Silva D, Chioua M, do Carmo Carreiras M, Marco-Contelles J. Synth. Commun. 2011; 41: 2859
    • 10g Li Y, Xie Y, Zhang R, Jin K, Wang X, Duan C. J. Org. Chem. 2011; 76: 5444
    • 10h Wang J, Hou J.-T, Wen J, Zhang J, Yu X.-Q. Chem. Commun. 2011; 47: 3652
  • 11 Chen W.-X, Shao L.-X. J. Org. Chem. 2012; 77: 9236
    • 12a Peng Y.-Y, Liu J, Lei X, Yin Z. Green Chem. 2010; 12: 1072
    • 12b Ding Q, Cao B, Liu X, Zong Z, Peng Y.-Y. Green Chem. 2010; 12: 1607
    • 12c Liu J.-B, Zhou H.-P, Peng Y.-Y. Tetrahedron Lett. 2014; 55: 2872
  • 13 Kodimuthali A, Mungara A, Prasunamba PL, Pal M. J. Braz. Chem. Soc. 2010; 21: 1439
  • 14 Zielinski W, Mazik M. Pol. J. Chem. 1994; 68: 489