Synthesis 2015; 47(17): 2617-2630
DOI: 10.1055/s-0034-1380697
paper
© Georg Thieme Verlag Stuttgart · New York

Expedient Preparation of Aryllithium and Arylzinc Reagents from Aryl Chlorides Using Lithium 4,4′-Di-tert-Butylbiphenylide and Zinc(II) Chloride

Zhi-Liang Shen
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Korbinian Sommer
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
,
Paul Knochel*
Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5–13, Haus F, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
› Author Affiliations
Further Information

Publication History

Received: 30 March 2015

Accepted after revision: 09 April 2015

Publication Date:
19 May 2015 (online)


Abstract

We report an efficient method for the preparation of aryllithium and zinc reagents from inexpensive and readily available aryl chlorides by using lithium 4,4′-di-tert-butylbiphenylide (LiDBB) as a lithiation reagent. The resulting organometallic reagents underwent subsequent reactions with a variety of electrophiles, such as an aldehydes, DMF, PhSSO2Ph, TsCN, an aryl halide, or an acid chloride (through Pd-catalyzed cross-coupling). Aryl chlorides bearing substituents, including methoxy, 3,4-methylenedioxy, fluoride, TMS, OTMS, NMe2, acetal, and ketal, were shown to be appropriate substrates. Interestingly, aryl chlorides containing a formyl group could also be used, provided that the formyl group was temporarily converted into an α-amino alkoxide by using the lithium amide of N,N,N′-trimethylethylenediamine (LiTMDA). The presence of a hydroxyl group was also tolerated when it was deprotonated with n-BuLi prior to the addition of LiDBB.

Supporting Information

 
  • References


    • For selected reviews on organolithium reagents, see:
    • 1a Knochel P. Handbook of Functionalized Organometallics. Wiley-VCH; Weinheim: 2005
    • 1b Clayden J. Organolithiums: Selectivity for Synthesis. Pergamon; Oxford: 2002
    • 1c Rappoport Z, Marek I. The Chemistry of Organolithium Compounds . John Wiley and Sons; New York: 2004
    • 1d Luisi R, Capriati V. Lithium Compounds in Organic Synthesis: From Fundamentals to Applications. Wiley-VCH; Weinheim: 2014
    • 1e Gray M, Tinkel M, Snieckus V. Comprehensive Organolithium Chemistry II . Vol. 11. Abel EW, Stone FG. A, Wilkinson G, McKillop A. Pergamon; Oxford: 1995: 1-92
    • 1f Xi Z. Bull. Chem. Soc. Jpn. 2007; 80: 1021
    • 1g Xi Z. Acc. Chem. Res. 2010; 43: 1342
    • 1h Nájera C, Sansano JM, Yus M. Tetrahedron 2003; 59: 9255
    • 1i Chinchilla R, Nájera C, Yus M. Tetrahedron 2005; 61: 3139
    • 1j Chinchilla R, Nájera C, Yus M. Chem. Rev. 2004; 104: 2667
    • 1k Dagousset G, François C, Leόn T, Blanc R, Sansiaume-Dagousset E, Knochel P. Synthesis 2014; 46: 3133
  • 2 Trost BM. Science 1991; 254: 1471

    • For selected examples of the application of lithium naphthalenide in organic synthesis, see:
    • 3a Screttas CG, Micha-Screttas M. J. Org. Chem. 1978; 43: 1064
    • 3b Freeman PK, Hutchinson LL. J. Org. Chem. 1980; 45: 3191
    • 3c Guijarro A, Ramón DJ, Yus M. Tetrahedron 1993; 49: 469
    • 3d Huerta FF, Gómez C, Yus M. Tetrahedron 1999; 55: 4043
    • 3e Gómez I, Alonso E, Ramón DJ, Yus M. Tetrahedron 2000; 56: 4043
    • 3f Screttas CG, Steele BR, Micha-Screttas M, Heropoulos GA. Org. Lett. 2012; 14: 5680
    • 3g Alonso F, Candela P, Gómez C, Yus M. Adv. Synth. Catal. 2003; 345: 275
    • 3h Yus M, Herrera RP, Guijarro A. Tetrahedron Lett. 2001; 42: 3455
    • 3i Yus M, Herrera RP, Guijarro A. Chem. Eur. J. 2002; 8: 2574
    • 3j Alonso F, Lorenzo E, Yus M. J. Org. Chem. 1996; 61: 6058
    • 3k Almena J, Foubelo F, Yus M. J. Org. Chem. 1994; 59: 3210
    • 3l Ramon DJ, Yus M. J. Org. Chem. 1991; 56: 3825
    • 3m Yus M, Ramon DJ. J. Org. Chem. 1992; 57: 750
    • 3n Tsao J.-P, Tsai T.-Y, Chen I.-C, Liu H.-J, Zhu J.-L, Tsao S.-W. Synthesis 2010; 4242
    • 3o Behloul C, Chouti A, Guijarro D, Nájera C, Yus M. Synthesis 2015; 47: 507
    • 3p Behloul C, Bouchelouche K, Guijarro D, Nájera C, Yus M. Synthesis 2014; 46: 2065

      For selected examples of the application of LiDBB in organic synthesis, see:
    • 4a Freeman PK, Hutchinson LL. Tetrahedron Lett. 1976; 1849
    • 4b Freeman PK, Hutchinson LL. J. Org. Chem. 1980; 45: 1924
    • 4c Freeman PK, Hutchinson LL. J. Org. Chem. 1983; 48: 4705
    • 4d Knochel P, Seebach D. Tetrahedron Lett. 1981; 22: 3223
    • 4e Donohoe TJ, Jahanshahi A, Tucker MJ, Bhatti FL, Roslan IA, Kabeshov M, Wrigley G. Chem. Commun. 2011; 47: 5849
    • 4f Freeman PK, Hutchinson LL. J. Org. Chem. 1983; 48: 4705
    • 4g Donohoe TJ, House D. J. Org. Chem. 2002; 67: 5015
    • 4h Curran DP, Boussonnière A, Geib SJ, Lacôte E. Angew. Chem. Int. Ed. 2012; 51: 1602
    • 4i Tiong EA, Gleason JL. Org. Lett. 2009; 11: 1725
    • 4j Donohoe TJ, Rigby CL, Thomas RE, Nieuwenhuys WF, Bhatti FL, Cowley AR, Bhalay G, Linney ID. J. Org. Chem. 2006; 71: 6298
    • 4k Yang A, Butela H, Deng K, Doubleday MD, Cohen T. Tetrahedron 2006; 62: 6526
    • 4l Morin MD, Rychnovsky SD. Org. Lett. 2005; 7: 2051
    • 4m Deng K, Bensari A, Cohen T. J. Am. Chem. Soc. 2002; 124; 12106
    • 4n Rychnovsky SD, Takaoka LR. Angew. Chem. Int. Ed. 2003; 42: 818
    • 4o Shin J, Gerasimov O, Thompson DH. J. Org. Chem. 2002; 67: 6503
    • 4p Rychnovsky SD, Hata T, Kim AI, Buckmelter AJ. Org. Lett. 2001; 3: 807
    • 4q Cohen T, Doubleday MD. J. Org. Chem. 1990; 55: 4784
    • 4r Cherkauskas JP, Cohen T. J. Org. Chem. 1992; 57: 6
    • 4s Freeman PK, Ramnath N. J. Org. Chem. 1991; 56: 3646
    • 4t Manthorpe JM, Gleason JL. J. Am. Chem. Soc. 2001; 123: 2091
    • 4u Cheng D, Zhu S, Liu X, Norton SH, Cohen T. J. Am. Chem. Soc. 1999; 121: 10241
    • 4v Mudryk B, Cohen T. J. Org. Chem. 1989; 54: 5657
    • 4w Yus M, Ramón DJ. J. Chem. Soc., Chem. Commun. 1991; 398
    • 4x Almena J, Foubelo F, Yus M. J. Org. Chem. 1996; 61: 1859
    • 4y Yus M, Soler T, Foubelo F. J. Org. Chem. 2001; 66: 6207
    • 4z Foubelo F, Saleh SA, Yus M. J. Org. Chem. 2000; 65: 3478

      For reviews on the application of lithium naphthalenide and lithium 4,4′-di-tert-butylbiphenylide (LiDBB) in organic synthesis, see:
    • 5a Foubelo F, Yus M. Chem. Soc. Rev. 2008; 37: 2620
    • 5b Cohen T, Bupathy M. Acc. Chem. Res. 1989; 22: 152
    • 5c Ferguson MD In Encyclopedia of Reagents for Organic Synthesis . Vol. 8. Paquette LA, Crich D, Fuchs PL, Molander GA. John Wiley and Sons; Chichester: 2009: 6249-6251
    • 5d Short KM In Encyclopedia of Reagents for Organic Synthesis . Vol. 8. Paquette LA, Crich D, Fuchs PL, Molander GA. John Wiley and Sons; Chichester: 2009: 6136-6139
    • 5e Yus M. Chem. Soc. Rev. 1996; 25: 155
    • 5f Ramón DJ, Yus M. Eur. J. Org. Chem. 2000; 225
    • 5g Yus M. Synlett 2001; 1197
    • 5h Yus M In The Chemistry of Organolithium Compounds . Rappoport Z, Marek I. Wiley and Sons; Chichester: 2004. Chap. 11, 647-748
    • 6a Gómez C, Huerta FF, Yus M. Tetrahedron 1998; 54: 1853
    • 6b Bachki A, Foubelo F, Yus M. Tetrahedron 1997; 53: 4921
    • 6c Bloch R, Chaptal-Gradoz N. Tetrahedron Lett. 1992; 33: 6147

      For selected reviews, see:
    • 7a Negishi E. Acc. Chem. Res. 1982; 15: 340
    • 7b Negishi EI, Hu Q, Huang Z, Qian M, Wang G. Aldrichimica Acta 2005; 38: 71
    • 7c Diederich F, Stang PJ. Metal-Catalyzed Cross-Coupling Reactions . Wiley-VCH; Weinheim: 1998
    • 7d De Houwer J, Maes BU. W. Synthesis 2014; 46: 2533

      For examples, see:
    • 9a Evans PA, Nelson JD, Stanley AL. J. Org. Chem. 1995; 60: 2298
    • 9b Zhang Y, Rovis T. J. Am. Chem. Soc. 2004; 126: 15964
    • 9c Xu H, Ekoue-Kovi K, Wolf C. J. Org. Chem. 2008; 73: 7638
  • 10 Nasielski J, Hadei N, Achonduh G, Kantchev EA. B, O’Brien CJ, Lough A, Organ MG. Chem. Eur. J. 2010; 16: 10844

    • For a review, see:
    • 11a Comins DL. Synlett 1992; 615

    • For additional examples, see:
    • 11b Comins DL, Brown JD. J. Org. Chem. 1984; 49: 1078
    • 11c Comins DL, Brown JD. Tetrahedron Lett. 1981; 22: 4213
    • 12a Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis . John Wiley and Sons; New York: 1991
    • 12b Kocienski PJ. Protecting Groups . Thieme; New York: 1994
  • 13 Mudryk B, Cohen T. Org. Synth. 1995; 72: 173
  • 14 Wang H, Li L, Bai X.-F, Deng W.-H, Zheng Z.-J, Yang K.-F, Xu L.-W. Green Chem. 2013; 15: 2349
  • 15 Zhao C.-W, Ma J.-P, Liu Q.-K, Yu Y, Wang P, Li Y.-A, Wang K, Dong Y.-B. Green Chem. 2013; 15: 3150
  • 16 Amatore M, Gosmini C. Angew. Chem. Int. Ed. 2008; 47: 2089
  • 17 Colombel V, Presset M, Oehlrich D, Rombouts F, Molander GA. Org. Lett. 2012; 14: 1680
  • 18 Li H, Xu Y, Shi E, Wei W, Suo X, Wan X. Chem. Commun. 2011; 47: 7880
  • 19 Taniguchi N. J. Org. Chem. 2007; 72: 1241
  • 20 Hossain ML, Ye F, Liu Z, Xia Y, Shi Y, Zhou L, Zhang Y, Wang J. J. Org. Chem. 2014; 79: 8689