Subscribe to RSS
DOI: 10.1055/s-0034-1380698
Synthesis of DNA-Binding Peptoids
Publication History
Received: 17.03.205
Accepted after revision: 10 April 2015
Publication Date:
11 May 2015 (online)
Abstract
Programmable molecular recognition through nucleic acid base pairing has enabled applications in nano- and biotechnology using DNA, RNA, PNA, and more recently, bifacial PNA (bPNA). We describe herein the synthesis and DNA recognition properties of peptoid backbones bearing the bifacial synthetic nucleobase melamine. These ‘peptoid nucleic acids’ hybridize with thymine-rich DNA, like their peptide cognate (bPNA). DNA complexation is highly sensitive to peptoid side-chain length and overall charge. Peptoids isomeric with peptide bPNA were less efficient at DNA recognition, possibly due to conformational and steric differences.
1 Triazines and DNA Molecular Recognition
2 Synthesis of DNA-Binding Peptoids
3 Peptoid–DNA Binding Studies
Supporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380698.
- Supporting Information
-
References and Notes
- 1 Ranganathan A, Pedireddi VR, Rao CN. R. J. Am. Chem. Soc. 1999; 121: 1752
- 2 Zerkowski JA, MacDonald JC, Seto CT, Wierda DA, Whitesides GM. J. Am. Chem. Soc. 1994; 116: 2382
- 3 Zerkowski JA, Seto CT, Whitesides GM. J. Am. Chem. Soc. 1992; 114: 5473
- 4 Whitesides GM, Simanek EE, Mathias JP, Seto CT, Chin D, Mammen M, Gordon DM. Acc. Chem. Res. 1995; 28: 37
- 5 Ten Cate MG. J, Huskens J, Crego-Calama M, Reinhoudt DN. Chem. Eur. J. 2004; 10: 3632
- 6 Ma M, Bong D. Langmuir 2011; 27: 8841
- 7 Ma M, Bong D. Org. Biomol. Chem. 2011; 9: 7296
- 8 Ma M, Bong D. Langmuir 2011; 27: 1480
- 9 Ma M, Paredes A, Bong D. J. Am. Chem. Soc. 2008; 130: 14456
- 10 Ma M, Gong Y, Bong D. J. Am. Chem. Soc. 2009; 131: 16919
- 11 Kimizuka N, Kawasaki T, Hirata K, Kunitake T. J. Am. Chem. Soc. 1998; 120: 4094
- 12 Kawasaki T, Tokuhiro M, Kimizuka N, Kunitake T. J. Am. Chem. Soc. 2001; 123: 6792
- 13 Ariga K, Kunitake T. Acc. Chem. Res. 1998; 31: 371
- 14 SantaLucia JJr, Hicks D. Annu. Rev. Biophys. Biomol. Struct. 2004; 33: 415
- 15 Lange RF. M, Beijer FH, Sijbesma RP, Hooft RW. W, Kooijman H, Spek AL, Kroon J, Meijer EW. Angew. Chem. Int. Ed. Engl. 1997; 36: 969
- 16 Zhou Z, Bong D. Langmuir 2013; 29: 144
- 17 Arambula JF, Ramisetty SR, Baranger AM, Zimmerman SC. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 16068
- 18 Jahromi AH, Nguyen L, Fu Y, Miller KA, Baranger AM, Zimmerman SC. ACS Chem. Biol. 2013; 8: 1037
- 19 Zeng Y, Pratumyot Y, Piao X, Bong D. J. Am. Chem. Soc. 2012; 134: 832
- 20 Piao X, Xia X, Bong D. Biochemistry 2013; 52: 6313
- 21 Xia X, Piao X, Fredrick K, Bong D. ChemBioChem 2013; 15: 31
- 22 Xia X, Piao X, Bong D. J. Am. Chem. Soc. 2014; 136: 7265
- 23 Piao X, Xia X, Mao J, Bong D. J. Am. Chem. Soc. 2015; 137: 3751
- 24 Nielsen PE. Acc. Chem. Res. 1999; 32: 624
- 25 Huang Y, Dey S, Zhang X, Sönnichsen F, Garner P. J. Am. Chem. Soc. 2004; 126: 4626
- 26 Garner P, Dey S, Huang Y. J. Am. Chem. Soc. 2000; 122: 2405
- 27 Almarsson O, Bruice TC, Kerr J, Zuckermann RN. Proc. Natl. Acad. Sci. U.S.A. 1993; 90: 7518
- 28 Zuckermann RN, Kodadek T. Curr. Opin. Mol. Ther. 2009; 11: 299
- 29 Yoo B, Kirshenbaum K. Curr. Opin. Chem. Biol. 2008; 12: 714
- 30 Xiao X, Yu P, Lim H.-S, Sikder D, Kodadek T. J. Comb. Chem. 2007; 9: 592
- 31 Zuckermann RN, Kerr JM, Kent SB. H, Moos WH. J. Am. Chem. Soc. 1992; 114: 10646
- 32 Mittapalli GK, Reddy KR, Xiong H, Munoz O, Han B, De Riccardis F, Krishnamurthy R, Eschenmoser A. Angew. Chem. Int. Ed. 2007; 46: 2470
- 33 Schnolzer M, Alewood P, Jones A, Alewood D, Kent SB. Int. J. Pept. Protein Res. 1992; 40: 180
- 34 Olivos HJ, Alluri PG, Reddy MM, Salony D, Kodadek T. Org. Lett. 2002; 4: 4057
- 35 Butterfoss GL, Renfrew PD, Kuhlman B, Kirshenbaum K, Bonneau R. J. Am. Chem. Soc. 2009; 131: 16798
- 36 Gorske BC, Stringer JR, Bastian BL, Fowler SA, Blackwell HE. J. Am. Chem. Soc. 2009; 131: 16555