Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2015; 47(15): 2207-2216
DOI: 10.1055/s-0034-1380717
DOI: 10.1055/s-0034-1380717
special topic
Chiral Primary Amine Catalyzed Asymmetric Tandem Reduction–Michael Addition–Protonation Reaction between Alkylidene Meldrum’s Acid and α-Substituted Vinyl Ketones
Further Information
Publication History
Received: 06 March 2015
Accepted after revision: 13 April 2015
Publication Date:
19 May 2015 (online)
Abstract
One-pot three-component tandem reduction–Michael addition–protonation reactions of alkylidene Meldrum’s acids to α-substituted vinyl ketones have been developed by using a chiral primary amine as the organocatalyst, affording the products in excellent yields and with good enantioselectivity.
Key words
primary amine catalysis - enamine protonation - Meldrum’s acid - Michael addition - α-substituted vinyl ketoneSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1380717.
- Supporting Information
-
References
- 1a Lipson VV, Gorobets NY. Mol. Diversity 2009; 13: 399
- 1b Ivanov AS. Chem. Soc. Rev. 2008; 37: 789
- 1c Chen B.-C. Heterocycles 1991; 32: 529
- 1d Makowiec JR. S, Janikowska K. Russ. Chem. Rev. 2014; 83: 620
- 2a Kaumanns O, Mayr H. J. Org. Chem. 2008; 73: 2738
- 2b Kaumanns O, Lucius R, Mayr H. Chem. Eur. J. 2008; 14: 9675
- 2c Chen X, Tan Y, Berionni G, Ofial AR, Mayr H. Chem. Eur. J. 2014; 20: 11069
- 3a Dumas AM, Fillion E. Acc. Chem. Res. 2010; 43: 440
- 3b Ramachary DB, Chowdary NS, Barbas III CF. Angew. Chem. Int. Ed. 2003; 42: 4233
- 3c Watanabe T, Knöpfel TF, Carreira EM. Org. Lett. 2003; 5: 4557
- 3d Knöpfel TF, Zarotti P, Takashi Y, Carreira EM. J. Am. Chem. Soc. 2005; 127: 9682
- 3e Wilsily A, Fillion E. J. Org. Chem. 2009; 74: 8583
- 3f Fillion E, Wilsily A. J. Am. Chem. Soc. 2006; 128: 2774
- 3g Wilsily A, Lou T, Fillion E. Synthesis 2009; 2066
- 3h Hénon H, Mauduit M, Alexakis A. Angew. Chem. Int. Ed. 2008; 47: 9122
- 3i Fillion E, Wilsily A, Liao E.-T. Tetrahedron: Asymmetry 2006; 17: 2957
- 3j Wilsily A, Fillion E. Org. Lett. 2008; 10: 2801
- 3k Fillion E, Zorzitto AK. J. Am. Chem. Soc. 2009; 131: 14608
- 3l Cui S, Walker SD, Woo JC. S, Borths CJ, Mukherjee H, Chen MJ, Faul MM. J. Am. Chem. Soc. 2010; 132: 436
- 3m Woo JC. S, Cui S, Walker SD, Faul MM. Tetrahedron 2010; 66: 4730
- 3n Mahoney SJ, Dumas AM, Fillion E. Org. Lett. 2009; 11: 5346
- 3o Trost BM, Morris PJ, Sprague SJ. J. Am. Chem. Soc. 2012; 134: 17823
- 4a Bassas O, Huuskenon J, Rissanen K, Koskinen AM. P. Eur. J. Org. Chem. 2009; 1340
- 4b Kleczkowska E, Sas W. Polish J. Chem. 2007; 81: 1457
- 4c Kimmel KL, Weaver JD, Ellman JA. Chem. Sci. 2012; 3: 121
- 4d Kimmel KL, Weaver JD, Lee M, Ellman JA. J. Am. Chem. Soc. 2012; 134: 9058
- 4e Tite T, Sabbah M, Levacher V, Brière J.-F. Chem. Commun. 2013; 49: 11569
- 4f Pair E, Berini C, Noël R, Sanselme M, Levacher V, Brière J.-F. Chem. Commun. 2014; 50: 10218
- 5a Zhang L, Luo S. Synlett 2012; 23: 1575
- 5b Zhang L, Fu N, Luo S. Acc. Chem. Res. 2015; 48: 986
- 5c Li J, Li X, Zhou P, Zhang L, Luo S, Cheng J.-P. Eur. J. Org. Chem. 2009; 4486
- 5d Li J, Fu N, Zhang L, Zhou P, Luo S, Cheng J.-P. Eur. J. Org. Chem. 2010; 6840
- 5e Fu N, Zhang L, Li J, Luo S, Cheng J.-P. Angew. Chem. Int. Ed. 2011; 50: 11451
- 5f Fu N, Zhang L, Luo S, Cheng J.-P. Chem. Eur. J. 2013; 19: 15669
- 5g Fu N, Zhang L, Luo S, Cheng J.-P. Org. Chem. Front. 2014; 1: 68
- 5h Fu N, Zhang L, Luo S, Cheng J.-P. Org. Lett. 2014; 16: 4626
- 5i Cui L, Zhang L, Luo S, Cheng J.-P. Eur. J. Org. Chem. 2014; 3540
- 5j Fu N, Zhang L, Luo S. Org. Lett. 2015; 17: 382
- 6a Ouellet SG, Walji AM, MacMillan DW. C. Acc. Chem. Res. 2007; 40: 1327
- 6b Rueping M, Dufour J, Schoepke FR. Green Chem. 2011; 13: 1084
- 6c Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498
- 7a Yanagisawa A, Yamamoto H In Comprehensive Asymmetric Catalysis . Vol. III. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; Heidelberg: 1999: 1295-1306
- 7b Duhamel L, Duhamel P, Plaquevent J.-C. Tetrahedron: Asymmetry 2004; 15: 3653
- 7c Fehr C. Angew. Chem. Int. Ed. 1996; 35: 2566
- 7d Blanchet J, Baudoux J, Amere M, Lasne M.-C, Rouden J. Eur. J. Org. Chem. 2008; 5493
- 7e Mohr JT, Hong AY, Stoltz BM. Nat. Chem. 2009; 1: 359
- 7f Oudeyer S, Brière J.-F, Levacher V. Eur. J. Org. Chem. 2014; 6103
- 8a Yang JW, Hechavarria Fonseca MT, List B. J. Am. Chem. Soc. 2005; 127: 15036
- 8b Michrowska A, List B. Nat. Chem. 2009; 1: 225
- 8c Rueping M, Haack K, Ieawsuwan W, Sundén H, Blanco M, Schoepke FR. Chem. Commun. 2011; 47: 3828
- 8d Enders D, Liebich JX, Raabe G. Chem. Eur. J. 2010; 16: 9763
- 8e Anderson JC, Koovits PJ. Chem. Sci. 2013; 4: 2897
- 8f Wang S.-G, Zhang W, You S.-L. Org. Lett. 2013; 15: 1488
- 9 The absolute configuration has not been determined yet.
- 10 Dumas AM, Seed A, Zorzitto AK, Fillion E. Tetrahedron Lett. 2007; 48: 7072
- 11 Lu S.-M, Bolm C. Angew. Chem. Int. Ed. 2008; 47: 8920
For reviews on Meldrum’s acid, see:
For a recent review, see:
For selected examples of alkylidene Meldrum’s acids used in asymmetric C–C bond-forming reactions, see:
For selected examples of Meldrum’s acids used in asymmetric C–C bond-forming reactions, see:
For accounts, see:
For examples, see:
For selected reviews on transfer hydrogenation reactions with Hantzsch esters, see:
For reviews on enantioselective protonation, see:
For selected examples of enantioselective tandem reduction–addition reactions, see: