Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(11): 1465-1469
DOI: 10.1055/s-0034-1381004
DOI: 10.1055/s-0034-1381004
letter
N-Heterocyclic Carbene Catalyzed Enantioselective Annulation of Benzothiazolyl Ethyl Acetates with 2-Bromoenals
Further Information
Publication History
Received: 30 March 2015
Accepted after revision: 16 May 2015
Publication Date:
11 June 2015 (online)
Abstract
An N-heterocyclic carbene catalyzed enantioselective [3+3] annulation of benzothiazolyl acetates with 2-bromoenals has been developed. The protocol provides a direct asymmetric synthesis of dihydro-1H-benzothiazolopyridinones in good to very good yields and medium ee values. In many cases, the virtually enantiopure heterocycles are available through a single recrystallization (99% ee).
Key words
asymmetric synthesis - N-heterocyclic carbene - organocatalysis - annulation - dihydrobenzothiazolopyridinonesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0034-1381004.
- Supporting Information
-
References and Notes
- 1a Burstein C, Glorius F. Angew. Chem. Int. Ed. 2004; 43: 6205
- 1b Sohn SS, Rosen EL, Bode JW. J. Am. Chem. Soc. 2004; 126: 14370
- 1c For a review, see: Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
- 2a Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
- 2b Nair V, Vellalath S, Babu BP. Chem. Soc. Rev. 2008; 37: 2691
- 2c Biju AT, Kuhl N, Glorius F. Acc. Chem. Res. 2011; 44: 1182
- 2d Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
- 2e Vora HU, Wheeler P, Rovis T. Adv. Synth. Catal. 2012; 354: 1617
- 2f Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
- 2g Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
- 2h Ryan SJ, Candish L, Lupton DW. Chem. Soc. Rev. 2013; 42: 4906
- 2i Hopkinson MN, Richter C, Schedler M, Glorius F. Nature (London, U.K.) 2014; 510: 485
- 3a Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2009; 131: 14176
- 3b De Sarkar S, Studer A. Angew. Chem. Int. Ed. 2010; 49: 9266
- 3c Kaeobamrung J, Mahatthananchai J, Zheng P, Bode JW. J. Am. Chem. Soc. 2010; 132: 8810
- 3d Yao C, Wang D, Lu J, Li T, Jiao W, Yu C. Chem. Eur. J. 2012; 18: 1914
- 3e Cheng J, Huang Z, Chi YR. Angew. Chem. Int. Ed. 2013; 52: 8592
- 3f Chen X.-Y, Gao Z.-H, Song C.-Y, Zhang C.-L, Wang Z.-X, Ye S. Angew. Chem. Int. Ed. 2014; 53: 11611
- 4a Rong Z.-Q, Jia M.-Q, You S.-L. Org. Lett. 2011; 13: 4080
- 4b Sun F.-G, Sun L.-H, Ye S. Adv. Synth. Catal. 2011; 353: 3134
- 5a Wanner B, Mahatthananchai J, Bode JW. Org. Lett. 2011; 13: 5378
- 5b Yetra SR, Bhunia A, Patra A, Mane MV, Vanka K, Biju AT. Adv. Synth. Catal. 2013; 355: 1089
- 6 Mahatthananchai J, Kaeobamrung J, Bode JW. ACS Catal. 2012; 2: 494
- 7 Yetra SR, Kaicharla T, Kunte SS, Gonnade RG, Biju AT. Org. Lett. 2013; 15: 5202
- 8 Zhang H.-M, Jia W.-Q, Liang Z.-Q, Ye S. Asian J. Org. Chem. 2014; 3: 462
- 9 Ni Q, Song X, Raabe G, Enders D. Chem. Asian J. 2014; 9: 1535 ; and references cited therein
- 10 Haddach M, Schwaebe MK, Michaux J, Nagasawa J, O’Brien SE, Whitten JP, Pierre F, Kerdoncuff P, Darjania L, Stansfield R, Drygin D, Anderes K, Proffitt C, Bliesath J, Siddiqui-Jain A, Omori M, Huser N, Rice WG, Ryckman DM. ACS Med. Chem. Lett. 2012; 3: 602
- 11 Dinakaran M, Senthilkumar P, Yogeeswari P, China A, Nagaraja V, Sriram D. Bioorg. Med. Chem. 2008; 16: 3408
- 12 Robinson ER. T, Fallan C, Simal C, Slawin AM. Z, Smith AD. Chem. Sci. 2013; 4: 2193
- 13 Ni Q, Song X, Xiong J, Raabe G, Enders D. Chem. Commun. 2015; 51: 1263
- 14 Song X, Ni Q, Chen Z, Raabe G, Enders D. Synthesis 2015; 47: 421
- 15a Raup DE. A, Cardinal-David B, Holte D, Scheidt KA. Nat. Chem. 2010; 2: 766
- 15b Cohen DT, Cardinal-David B, Scheidt KA. Angew. Chem. Int. Ed. 2011; 50: 1678
- 15c Dugal-Tessier J, O’Bryan EA, Schroeder TB. H, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 4963
- 16 General Procedure for the Synthesis of Dihydro-1H-benzothiazolopyridinones 3a–k To an oven-dried and argon-filled Schlenk tube was added 2-substituted benzo[d]thiazole component 1 (0.5 mmol), 2-bromoenal 2 (0.75 mmol, 1.5 equiv), triazolium salt C (0.05 mmol, 10 mol%), and DIPEA (0.6 mmol, 1.2 equiv) in toluene (5 mL). The mixture was stirred at r.t. and monitored by TLC until completion of the reaction. The residue was purified by flash chromatography on silica gel [n-pentane–Et2O (10:1) or n-pentane–CH2Cl2 (1:1 to 1:2)] to afford the products 3a–k as orange or yellow solids. Ethyl (S)-1-Oxo-3-phenyl-2,3-dihydro-1H-benzo[4,5]thiazolo-[3,2-a]pyridine-4-carboxylate (3a)Yield: 135.6 mg (77%), mp 125–127 °C. The ee (65%, 99% after recrystallization) was measured by HPLC using a chiral stationary phase [Daicel IC, n-heptane–EtOH = 7:3, 0.7 mL/min), t R = 4.53 min (major), 5.35 min (minor)]. [α]D 23 = +236.9 (c 1.0, CHCl3). 1H NMR (600 MHz, CDCl3): δ = 8.44 (d, J = 8.4 Hz, 1 H), 7.45 (dd, J = 7.2, 1.2 Hz, 1 H), 7.30–7.18 (m, 7 H), 4.33–4.32 (m, 1 H), 4.28–4.16 (m, 2 H), 3.24 (dd, J = 16.2, 8.4 Hz, 1 H), 3.02 (dd, J = 16.2, 1.8 Hz, 1 H), 1.23 (t, J = 7.2 Hz, 3 H). 13C NMR (150 MHz, CDCl3): δ = 168.2, 166.6, 152.3, 141.4, 136.8, 128.9 (2 C), 127.2, 127.0, 126.5 (2 C), 126.5, 125.5, 121.4, 117.4, 100.4, 60.7, 40.1, 36.8, 14.3. MS (EI, 70 eV): m/z (%) = 351 (100) [M+], 322 (36), 278 (40), 249 (44), 236 (71), 115 (19), 77 (17). IR (ATR): 3851, 3613, 3401, 3060, 2980, 2921, 2645, 2325, 2037, 1903, 1803, 1707, 1660, 1556, 1455, 1359, 1305, 1263, 1194, 1146, 1106, 1034, 939, 906, 853, 795, 748, 697 cm–1. ESI-HRMS: m/z calcd for C20H17NO3S [M]+: 351.0924; found: 351.0933.
- 17 CCDC 1056458 contains the supplementary crystallographic data for the compound 3b reported in this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
For selected reviews on NHC organocatalysis, see:
For selected examples for the generation of α,β-unsaturated acylazolium intermediates, see: