Synthesis 2015; 47(23): 3813-3821
DOI: 10.1055/s-0034-1381058
paper
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Synthesis of Tetrahydropyridines via a Brønsted Acid Catalyzed Aza-Diels–Alder Reaction

Christian Beceño
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Tim Krappitz
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Gerhard Raabe
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
,
Dieter Enders*
Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
› Author Affiliations
Further Information

Publication History

Received: 23 July 2015

Accepted: 27 July 2015

Publication Date:
13 August 2015 (online)


Abstract

The asymmetric synthesis of tetrahydropyridines employing a normal electron-demanding aza-Diels–Alder reaction has been developed. The [4+2] cycloaddition of ethyl glyoxylate imine with aryl-substituted 2-silyloxy-1,3-butadienes is catalyzed by 5 mol% of a BINOL-derived phosphoric acid and in general leads to good yields and ee values with good to excellent diastereoselectivities. The cycloadducts can be further converted into the corresponding piperidinones, which are important pipecolic acid derivatives.

Supporting Information