Synthesis 2015; 47(22): 3479-3488
DOI: 10.1055/s-0034-1381136
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Helquats Based on Phenanthridinium Units: Four-Step Procedure to Novel Extended Helical Dications

Manoj R. Sonawane
a   Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic   Email: teply@uochb.cas.cz
,
Jan Vávra
a   Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic   Email: teply@uochb.cas.cz
,
David Šaman
a   Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic   Email: teply@uochb.cas.cz
,
Ivana Císařová
b   Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
,
Filip Teplý*
a   Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo n. 2, 166 10 Prague 6, Czech Republic   Email: teply@uochb.cas.cz
› Author Affiliations
Further Information

Publication History

Received: 27 March 2015

Accepted after revision: 29 May 2015

Publication Date:
10 August 2015 (online)


Abstract

Three novel helical dications (helquats) containing phenanthridinium units have been synthesized from 6-(pyridin-2-ylethyn­yl)phenanthridine as a common precursor prepared by Sonogashira coupling of phenanthridin-6-yl triflate with 2-ethynylpyridine. Bisquaternization of the common precursor followed by rhodium-catalyzed [2+2+2] cycloisomerization led to the title helical dicationic scaffolds. The connectivity and spatial arrangement of the three target helquats were unambiguously established by X-ray crystal structure analysis.

Supporting Information

 
  • References


    • For illustrative examples, see:
    • 1a Xu J, Shao L.-D, Li D, Deng X, Liu Y.-C, Zhao Q.-S, Xia C. J. Am. Chem. Soc. 2014; 136: 17962
    • 1b Wenkert E, Angell EC, Drexler J, Moeller PD. R, Pyrek JSt, Shi Y.-J, Sultana M, Vankar YD. J. Org. Chem. 1986; 51: 2995
    • 1c Lavilla R, Spada A, Bosch J. Org. Lett. 2000; 2: 1533
    • 1d Liu W, Khedkar V, Baskar B, Schürmann M, Kumar K. Angew. Chem. Int. Ed. 2011; 50: 6900
    • 1e Parenty AD. C, Song Y.-F, Richmond CJ, Cronin L. Org. Lett. 2007; 9: 2253
    • 1f Kitson PJ, Parenty AD. C, Richmond CJ, Long D.-L, Cronin L. Chem. Commun. 2009; 4067 ; and references therein

      For reviews, see:
    • 2a Phillips SD, Castle RN. J. Heterocycl. Chem. 1981; 18: 223
    • 2b Tumir L.-M, Stojković MR, Piantanida I. Beilstein J. Org. Chem. 2014; 10: 2930

      For selected reviews, see:
    • 3a Marder SR, Perry JW, Yakymashyn CP. Chem. Mater. 1994; 6: 1137
    • 3b Jazbinsek M, Günter P. In Introduction to Organic Electronic and Optoelectronic Materials and Devices . Sun S.-S, Dalton LR. CRC Press; Boca Raton: 2008. Chap. 15, 421

    • For recent reports, see:
    • 3c Coe BJ, Fielden J, Foxon SP, Harris JA, Helliwell M, Brunschwig BS, Asselberghs I, Clays K, Garín J, Orduna J. J. Am. Chem. Soc. 2010; 132: 10498
    • 3d Reyes-Gutiérrez PE, Jirásek M, Severa L, Novotná P, Koval D, Sázelová P, Vávra J, Meyer A, Císařová I, Šaman D, Pohl R, Štěpánek P, Slavíček P, Coe BJ, Hájek M, Kašička V, Urbanová M, Teplý F. Chem. Commun. 2015; 51: 1583
    • 4a Braña MF, Cacho M, Gradillas A, de Pascual-Teresa B, Ramos A. Curr. Pharm. Des. 2001; 7: 1745
    • 4b Ihmels H, Otto D. Top. Curr. Chem. 2005; 258: 161
    • 4c Ihmels H, Faulhaber K, Vedaldi D, Dall’Acqua F, Viola G. Photochem. Photobiol. 2005; 81: 1107
    • 4d Whittaker J, McFadyen WD, Wickham G, Wakelin LP, Murray V. Nucleic Acids Res. 1998; 26: 3933
    • 4e Whittaker J, McFadyen WD, Baguley BC, Murray V. Anti-Cancer Drug Des. 2001; 16: 81
    • 4f Wickham G, Prakash AS, Wakelin LP. G, McFadyen WD. Biochim. Biophys. Acta, Gen. Subj. 1991; 1073: 528
    • 5a Makhey D, Gatto B, Yu C, Liu A, Liu LF, LaVoie EJ. Bioorg. Med. Chem. 1996; 4: 781
    • 5b Lynch MA, Duval O, Sukhanova A, Devy J, MacKay SP, Waigh RD, Nabiev I. Bioorg. Med. Chem. Lett. 2001; 11: 2643
    • 5c Fang SD, Wang LK, Hecht SM. J. Org. Chem. 1993; 58: 5025
    • 5d Janin YL, Croisy A, Riou JF, Bisagni E. J. Med. Chem. 1993; 36: 3686
  • 6 Mullins ST, Sammes PG, West RM, Yahioglu G. J. Chem. Soc., Perkin Trans. 1 1996; 75
    • 8a Parenty AD. C, Guthrie KM, Song YF, Smith LV, Burkholder E, Cronin L. Chem. Commun. 2006; 1194
    • 8b Smith LV, Parenty AD. C, Guthrie KM, Plumb J, Brown R, Cronin L. ChemBioChem 2006; 7: 1757
    • 8c Parenty AD. C, Smith LV, Guthrie KM, Long DL, Plumb J, Brown R, Cronin L. J. Med. Chem. 2005; 48: 4504
    • 8d Stark LM, Lin X.-F, Flippin LA. J. Org. Chem. 2000; 65: 3227
    • 8e Baechler SA, Fehr M, Habermeyer M, Hofmann A, Merz K.-H, Fiebig H.-H, Marko D, Eisenbrand G. Bioorg. Med. Chem. 2013; 21: 814
    • 8f Koeppel F, Riou JF, Laoui A, Mailliet P, Arimondo PB, Labit D, Petitgenet O, Hélène C, Mergny J.-L. Nucleic Acids Res. 2001; 29: 1087
    • 8g Bárcena M, Colmenarejo G, Gutiérrez-Alonso MC, Montero F, Orellana G. Biochem. Biophys. Res. Commun. 1995; 214: 716
    • 8h Colmenarejo G, Bárcena M, Gutiérrez-Alonso MC, Montero F, Orellana G. FEBS Lett. 1995; 374: 426
    • 8i Green GR, Mann IS, Mullane MV. Tetrahedron 1998; 54: 9875
    • 8j Parhi A, Kelley C, Kaul M, Pilch DS, LaVoie EJ. Bioorg. Med. Chem. Lett. 2012; 22: 7080
    • 8k Ishihara Y, Azuma S, Choshi T, Kohno K, Ono K, Tsutsumi H, Ishizu T, Hibino S. Tetrahedron 2011; 67: 1320
    • 8l Cairns AG, Senn HM, Murphy MP, Hartley RC. Chem. Eur. J. 2014; 20: 3742
    • 8m Morgan G T, Walls LP. J. Chem. Soc. 1931; 2447
    • 8n Baberkina EP, Buyanov VN, Zhukova ME, Shchekotikhin AE, Zhigachev VE, Suvorov NN. Chem. Heterocycl. Compd. 2001; 37: 1234
    • 9a Adriaenssens L, Severa L, Šálová T, Císařová I, Pohl R, Šaman D, Rocha SV, Finney NS, Pospíšil L, Slavíček P, Teplý F. Chem. Eur. J. 2009; 15: 1072
    • 9b Severa L, Adriaenssens L, Vávra J, Šaman D, Císařová I, Fiedler P, Teplý F. Tetrahedron 2010; 66: 3537
    • 9c Severa L, Koval D, Novotná P, Ončák M, Sázelová P, Šaman D, Slavíček P, Urbanová M, Kašička V, Teplý F. New J. Chem. 2010; 34: 1063
    • 9d Vávra J, Severa L, Švec P, Císařová I, Koval D, Sázelová P, Kašička V, Teplý F. Eur. J. Org. Chem. 2012; 489
    • 9e Pospíšil L, Teplý F, Gál M, Adriaenssens L, Horáček M, Severa L. Phys. Chem. Chem. Phys. 2010; 12: 1550
    • 9f Pospíšil L, Bednárová L, Štěpánek P, Slavíček P, Vávra J, Hromadová M, Dlouhá H, Tarábek J, Teplý F. J. Am. Chem. Soc. 2014; 136: 10826
    • 9g Vávra J, Severa L, Císařová I, Klepetářová B, Šaman D, Koval D, Kašička V, Teplý F. J. Org. Chem. 2013; 78: 1329
    • 9h Koval D, Severa L, Adriaenssens L, Vávra J, Teplý F, Kašička V. Electrophoresis 2011; 32: 2683
    • 10a Adriaenssens L, Severa L, Koval D, Císařová I, Belmonte MM, Escudero-Adán EC, Novotná P, Sázelová P, Vávra J, Pohl R, Šaman D, Urbanová M, Kašička V, Teplý F. Chem. Sci. 2011; 2: 2314
    • 10b Severa L, Ončák M, Koval D, Pohl R, Šaman D, Císařová I, Reyes-Gutiérrez PE, Sázelová P, Kašička V, Teplý F, Slavíček P. Angew. Chem. Int. Ed. 2012; 51: 11972
    • 10c Shaffer CJ, Révész Á, Schröder D, Severa L, Teplý F, Zins E.-L, Jašíková L, Roithová J. Angew. Chem. Int. Ed. 2012; 51: 10050
    • 10d Severa L, Jirásek M, Švec P, Teplý F, Révész Á, Schröder D, Koval D, Kašička V, Císařová I, Šaman D. ChemPlusChem 2012; 77: 624
  • 11 Balogh D, Zhang Z, Cecconello A, Vávra J, Severa L, Teplý F, Willner I. Nano Lett. 2012; 12: 5835

    • For examples of further cationic nitrogen-based helicene-like systems, see:
    • 12a Torricelli F, Bosson J, Besnard C, Chekini M, Bürgi T, Lacour J. Angew. Chem. Int. Ed. 2013; 52: 1796
    • 12b Herse C, Bas D, Krebs FC, Bürgi T, Weber J, Wesolowski T, Laursen BW, Lacour J. Angew. Chem. Int. Ed. 2003; 42: 3162
    • 12c Gouin J, Bürgi T, Guénée L, Lacour J. Org. Lett. 2014; 16: 3800
    • 12d Bosson J, Gouin J, Lacour J. Chem. Soc. Rev. 2014; 43: 2824
    • 12e Arai S, Yafune T, Ōkubo M, Hida M. Tetrahedron Lett. 1989; 30: 7217
    • 12f Passeri R, Aloisi GG, Elisei F, Latterini L, Caronna T, Fontana F, Sora IN. Photochem. Photobiol. Sci. 2009; 8: 1574

      Recent reviews on the synthesis and applications of helicenes and their congeners:
    • 13a Gingras M. Chem. Soc. Rev. 2013; 42: 1051
    • 13b Shen Y, Chen C.-F. Chem. Rev. 2012; 112: 1463
    • 13c Stará IG, Starý I. In Science of Synthesis . Vol. 45b. Siegel JS, Tobe Y. Thieme; Stuttgart: 2010. Chap. 45.21, 885
    • 13d Rajca A, Miyasaka M. In Functional Organic Materials: Syntheses, Strategies and Applications . Müller TJ. J, Bunz UH. F. Wiley-VCH; Weinheim: 2007. Chap. 15, 547
    • 13e Urbano A. Angew. Chem. Int. Ed. 2003; 42: 3986
    • 13f Urbano A, Carreño MC. Org. Biomol. Chem. 2013; 11: 699
    • 13g Saleh N, Shen C, Crassous J. Chem. Sci. 2014; 5: 3680
    • 13h Hoffmann N. J. Photochem. Photobiol., C 2014; 19: 1
    • 13i Jin T, Zhao J, Asao N, Yamamoto Y. Chem. Eur. J. 2014; 20: 3554
    • 14a Arcus CL, Coombs MM, Evans JV. J. Chem. Soc. 1956; 1498
    • 14b Badger GM, Pettit R. J. Chem. Soc. 1951; 3211
    • 15a Deady LW, Stillman DC. Aust. J. Chem. 1976; 29: 1745
    • 15b Deady LW, Finlayson WL, Korytsky OL. Aust. J. Chem. 1979; 32: 1735
  • 16 Economy of steps is one of the most important criteria for efficiency in chemical synthesis; see: Burns NZ, Baran PS, Hoffmann RW. Angew. Chem. Int. Ed. 2009; 48: 2854

    • The [2+2+2] cycloaddition reaction as an entry to helical scaffolds was originally developed by Starý and Stará for nonionic helical systems. For their pioneering report, see:
    • 17a Stará IG, Starý I, Kollárovič A, Teplý F, Šaman D, Tichý M. J. Org. Chem. 1998; 63: 4046

    • For further selected reports, see:
    • 17b Sehnal P, Stará IG, Šaman D, Tichý M, Míšek J, Cvačka J, Rulíšek L, Chocholoušová J, Vacek J, Goryl G, Szymonski M, Císařová I, Starý I. Proc. Natl. Acad. Sci. U.S.A. 2009; 106: 13169
    • 17c Han S, Bond A, Disch RL, Holmes D, Schulman JM, Teat SJ, Vollhardt KP. C, Whitener GD. Angew. Chem. Int. Ed. 2002; 41: 3223
    • 17d Roose J, Achermann S, Dumele O, Diederich F. Eur. J. Org. Chem. 2013; 3223
    • 17e Schweinfurth D, Zalibera M, Kathan M, Shen C, Mazzolini M, Trapp N, Crassous J, Gescheidt G, Diederich F. J. Am. Chem. Soc. 2014; 136: 13045
    • 17f Aillard P, Retailleau P, Voituriez A, Marinetti A. Chem. Commun. 2014; 50: 2199
    • 17g Crittall MR, Rzepa HS, Carbery DR. Org. Lett. 2011; 13: 1250
    • 17h Tanaka K, Kamisawa A, Suda T, Noguchi K, Hirano M. J. Am. Chem. Soc. 2007; 129: 12078
    • 17i Čížková M, Šaman D, Koval D, Kašička V, Klepetářová B, Císařová I, Teplý F. Eur. J. Org. Chem. 2014; 5681

      For recent reviews on [2+2+2] cycloaddition:
    • 18a Broere DL. J, Ruijter E. Synthesis 2012; 44: 2639
    • 18b Amatore M, Aubert C. Eur. J. Org. Chem. 2015; 265
    • 18c Transition-Metal-Mediated Aromatic Ring Construction. Tanaka K. Wiley; Hoboken: 2013
    • 18d Shibata Y, Tanaka K. Synthesis 2012; 44: 323
    • 18e Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
    • 18f Pla-Quintana A, Roglans A. Molecules 2010; 15: 9230
    • 18g Hua R, Abrenica MV. A, Wang P. Curr. Org. Chem. 2011; 15: 712
    • 18h Weding N, Hapke M. Chem. Soc. Rev. 2011; 40: 4525
    • 18i Chunxiang W, Xincheng L, Fen X, Boshun W. Prog. Chem. (Beijing, China) 2010; 22: 610
    • 18j Tanaka K, Kimura Y, Murayama K. Bull. Chem. Soc. Jpn. 2015; 88: 375
  • 19 Crystallographic data for compounds 11, 12, and 13 have been deposited with the accession numbers CCDC 985628, CCDC 985629, and CCDC 985630, respectively, and can be obtained free of charge from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html. See also the Supporting Information.
  • 20 Amabilino DB, Ashton PR, Reder AS, Spencer N, Stoddart JF. Angew. Chem., Int. Ed. Engl. 1994; 33: 1286