Zeitschrift für Phytotherapie 2014; 35(03): 2-9
DOI: 10.1055/s-0034-1381286
Übersicht
Echinacea
© Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Echinacea

Eine Bestandsaufnahme der neueren Literatur
Karin Ardjomand-Woelkart
,
Rudolf Bauer

Subject Editor:
Further Information

Publication History

Publication Date:
16 May 2014 (online)

Zusammenfassung

Trotz zahlreicher neuer Untersuchungen kann die therapeutische Wirkung von Echinacea nicht eindeutig einer bestimmten Komponente zugeschrieben werden. Allerdings deuten die jüngsten Daten darauf hin, dass die Alkamide eine sehr wichtige Rolle spielen. Sie besitzen zahlreiche immunmodulatorische und entzündungshemmende Eigenschaften und binden an CB2-Rezeptoren. Dies könnte ein Wirkungsmechanismus im Sinne eines Infektions-Mimiking bedeuten. Die Tatsache, dass für Echinacea-Alkamide auch die Bioverfügbarkeit nachgewiesen wurde und pharmakologisch relevante Blutspiegel erreicht werden, macht sie noch mehr zu klinisch hoch relevanten Inhaltsstoffen und eine entsprechende Standardisierung von Präparaten ist gerechtfertigt.

Die klinische Studienlage ist bei Echinacea-Präparaten immer noch nicht zufriedenstellend. Es deuten zwar viele Studien auf eine Wirksamkeit hin, insbesondere bei Zubereitungen aus den oberirdischen Teilen von E. purpurea, aber wegen der unterschiedlichen Zusammensetzung der verwendeten Zubereitungen sind die Ergebnisse der Studien widersprüchlich. In Zukunft sollten klinische Studien mit klar definierten Produkten gemacht werden.

Das Nebenwirkungs- und Interaktionspotenzial von Echinacea-Präparaten ist nicht besorgniserregend. Kontraindikationen bei Autoimmunerkrankungen sind substanziell nicht gerechtfertigt. Die Vorsichtsmaßnahme, „Echinacea“ nicht bei atopischen Patienten zu verwenden, ergibt sich aus der allgemein bekannten Allergenität gegen Pollen-Proteine von Korbblütlern. Ein besonderes Risiko für Kinder über einem Jahr ist nicht dokumentiert.

Summary

Echinacea – a survey of current literature
In spite of numerous new studies, the therapeutic effect of echinacea cannot be clearly attributed to one specific component. Nonetheless, recent data suggest that the alkamides play a very important role due to their numerous immunomodulatory and anti-inflammatory properties and the ability to bind to CB2 receptors. This could be related to a mechanism of action referred to as infection mimicking. Echinacea alkamides are clinically relevant ingredients warranting an appropriate standardization as a result of their established bio-availability and the pharmacologically relevant blood levels.

Clinical studies on echinacea preparations are still not satisfactory. Although many studies suggest their efficacy, especially those of preparations from the aerial parts of E. purpurea, the results of the studies are contradictory due to the different composition of the applied preparations. It is recommended that future clinical trials be carried out with well defined products.

The side-effects and interaction potential of echinacea preparations are not a serious cause for concern. Moreover, contraindications in autoimmune diseases are not substantially justified. The precaution, not to use "echinacea", in atopic patients arises from the widely known allergenicity against pollen proteins from composite flowers. A particular risk for children over one year has not been documented.

 
  • Literatur

  • 1 Abdul MI, Jiang X, Williams KM et al. Pharmacokinetic and pharmacodynamics interactions of Echinacea and policosanol with warfarin in healthy subjects. Br J Clin Pharmacol 2010; 69: 508-515
  • 2 Adams PF, Hendershot GE, Marano MA. Current estimates from the National Health Interview Survey, 1996 . Vital Health Stat 10. 1999; (200): 1-203
  • 3 Ardjomand-Woelkart K, Kollroser M, Magnes C et al. Absolute/relative bioavailability and metabolism of dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides (tetraenes) after intravenous and oral single doses to rats. Planta Med 2011; 77: 1794-1799
  • 4 Barrett BP, Brown RL, Locken K et al. Treatment of the common cold with unrefined Echinacea. A randomized, double-blind, placebo-controlled trial.. Ann Intern Med 2002; 137: 939-946
  • 5 Barrett B, Brown R, Rakel D et al. Echinacea for treating the common cold: a randomized trial. Ann Intern Med 2010; 153: 769-777
  • 6 Bauer R, Wagner H. Echinacea, Handbuch für Ärzte, Apotheker und andere Naturwissenschaftler. Stuttgart: Wiss. Verlagsges; 1990
  • 7 Bauer R. Standardisierung von Echinacea-purpurea-Preßsaft auf Cichoriensäure und Alkamide . Z Phytother 1997; 18: 270-276
  • 8 Bauer R. Chemistry, analysis and immunological investigations of Echinacea phytopharmaceuticals. In: Wagner H, ed. Immunomodulatory Agents from Plants. Basel, Boston, Berlin: Birkhäuser; 1999: 41-88
  • 9 Bodinet C, Lindequist U, Teuscher E, Freudenstein J. Influence of peroral application of a herbal immunomodulator on the antibody production of Peyer's patches cells. Arzneimittelforschung/Drug Res 2004; 54: 114-118
  • 10 Bossy A, Blaschek W, Classen B. Characterization and immunolocalization of arabinogalactan-proteins in roots of Echinacea purpurea. Planta Med 2009; 75: 1526-1533
  • 11 Caruso TJ, Gwaltney Jr JM. Treatment of the common cold with Echinacea: A structured review. Clin Infect Dis 2005; 40: 807-810
  • 12 Cech NB, Kandhi V, Davis JM et al. Echinacea and its alkylamides: effects on the influenza A-induced secretion of cytokines, chemokines, and PGE from RAW 264.7 macrophagelike cells . Int Immunopharmacol 2010; 10: 1268-1278
  • 13 Christensen KB, Minet A, Svenstrup H et al. Identification of plant extracts with potential antidiabetic properties: effect on human peroxisome proliferator-activated receptor (PPAR), adipocyte differentiation and insulin-stimulated glucose uptake . Phytother Res 2009; 23: 1316-1325
  • 14 Christensen KB, Petersen RK, Petersen S et al. Activation of PPAR by metabolites from the flowers of purple coneflower (Echinacea purpurea). J Nat Prod 2009; 72: 933-937
  • 15 Classen B, Thude S, Blaschek W et al. Immunomodulatory effects of arabinogalactanproteins from Baptisia and Echinacea . Phytomedicine 2006; 13: 688-694
  • 16 Croxford JL, Yamamura T. Cannabinoids and the immune system: Potential for the treatment of inflammatory diseases?. J Neuroimmunol 2005; 166: 3-18
  • 17 Fendrick AM, Monto AS, Nightengale B, Sarnes M. The economic burden of non-influenza-related viral respiratory tract infection in the United States. Arch Intern Med 2003; 163: 487-494
  • 18 Gertsch J, Schoop R, Kuenzle U, Suter A. Echinacea alkylamides modulate TNF-alpha gene expression via cannabinoid receptor CB2 and multiple signal transduction pathways . FEBS Letters 2004; 577: 563-569
  • 19 Gillespie EL, Coleman CI. The effect of Echinacea on upper respiratory infection symptom severity and quality of life . Connecticut Med 2006; 70: 93-97
  • 20 Gorski JC, Huang SM, Pinto A et al. The effect of Echinacea (Echinacea purpurea root) on cytochrome P450 activity in vivo . Clin Pharmacol Ther 2004; 75: 89-100
  • 21 Guiotto P, Wölkart K, Grabnar I et al. Pharmacokinetics and immunomodulatory effects of phytotherapeutic lozenges (bonbons) with Echinacea purpurea extract . Phytomedicine 2008; 15: 547-554
  • 22 Gurley BJ, Gardner SF, Hubbard MA et al. In vivo assessment of botanical supplementation on human cytochrome P450 phenotypes: Citrus aurantium, Echinacea purpurea, milk thistle, and saw palmetto . Clin Pharmacol Ther 2004; 76: 428-440
  • 23 Gurley BJ, Swain A, Hubbard MA et al. Clinical assessment of CYP2D6-mediated herbdrug interactions in humans: Effects of milk thistle, black cohosh, goldenseal, kava kava, St . John's wort, and Echinacea. Mol Nutr Food Res 2008; 52: 755-763
  • 24 Gurley BJ, Swain A, Williams DK et al. Gauging the clinical significance of P-glycoprotein-mediated herb-drug interactions: Comparative effects of St. John's wort, Echinacea, clarithromycin, and rifampin on digoxin pharmacokinetics.. Mol Nutr Food Res 2008; 52: 772-779
  • 25 Hansen TS, Nilsen OG. Echinacea purpurea and P-glycoprotein drug transport in Caco-2 cells . Phytother Res 2009; 23: 86-91
  • 26 Hinz B, Wölkart K, Bauer R. Alkamides from Echinacea inhibit cyclooxygenase-2 activity in human neuroglioma cells. Biochem Biophys Res Comm 2007; 360: 441-446
  • 27 Hou CC, Chen CH, Yang NS et al. Comparative metabolomics approach coupled with cell- and gene-based assays for species classification and anti-inflammatory bioactivity validation of Echinacea plants . J Nutr Biochem 2010; 21: 1045-1059
  • 28 Hudson JB. Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases . J Biomed Biotechnol 2012; 2012: 769896
  • 29 Jawad M, Schoop R, Suter A et al. Safety and efficacy profile of Echinacea purpurea to prevent common cold episodes: A randomized, double-blind, placebo-controlled trial . Evid Based Complement Alternat Med 2012; 2012: 841315
  • 30 Karsch-Völk M, Barrett B, Kiefer D et al. Echinacea for preventing and treating the common cold . Cochrane Database Syst Rev 2014; 2: CD000530
  • 31 Klein TW, Newton C, Larsen K et al. The cannabinoid system and immune modulation . J Leukocyte Biol 2003; 74: 486-449
  • 32 Lalone CA, Huang N, Rizshsky L et al. Enrichment of Echinacea angustifolia with Bauer alkylamide 11 and Bauer ketone 23 increased anti-inflammatory potential through interference with cox-2 enzyme activity . J Agric Food Chem 2010; 58: 8573-8584
  • 33 Lalone CA, Rizshsky L, Hammer KD et al. Endogenous levels of echinacea alkylamides and ketones are important contributors to the inhibition of prostaglandin E2 and nitric oxide production in cultured macrophages . J Agric Food Chem 2009; 57: 8820-8830
  • 34 Matias I, Pochard P, Orlando P et al. Presence and regulation of the endocannabinoid system in human dendritic cells . Eur J Biochem 2002; 269: 3771-3778
  • 35 Matthias A, Addison RS, Penman KG et al. Echinacea alkamide disposition and pharmacokinetics in humans after tablet ingestion . Life Sci 2005; 77: 2018-2029
  • 36 Matthias A, Addison RS, Agnew LL et al. Comparison of Echinacea alkylamide pharmacokinetics between liquid and tablet preparations . Phytomedicine 2007; 14: 587-590
  • 37 Matthias A, Banbury L, Bone KM et al. Echinacea alkylamides modulate induced immune responses in T-cells . Fitoterapia 2008; 79: 53-58
  • 38 McDevitt CA, Callaghan R. How can we best use structural information on P-glycoprotein to design inhibitors?. Pharmacol Ther 2007; 113: 429-441
  • 39 Modarai M, Gertsch J, Suter A et al. Cytochrome P450 inhibitory action of Echinacea preparations differs widely and co-varies with alkylamide content.. J Pharm Pharmacol 2007; 59: 567-573
  • 40 Modarai M, Silva E, Suter A et al. Safety of herbal medicinal products: Echinacea and selected alkylamides do not induce CYP3A4 mRNA expression . Evid Based Complement Alternat Med 2011; 2011: 213021
  • 41 Modarai M, Yang M, Suter A et al. Metabolomic profiling of liquid Echinacea medicinal products with in vitro inhibitory effects on cytochrome P450 3A4 (CYP3A4) . Planta Med 2010; 76: 378-385
  • 42 Molto J, Valle M, Miranda C et al. Herb-drug interaction between Echinacea purpurea and darunavir-ritonavir in HIV-infected patients . Antimicrob Agents Chemother 2011; 55: 326-330
  • 43 Mrozikiewicz PM, Bogacz A, Karasiewicz M et al. The effect of standardized Echinacea purpurea extract on rat cytochrome P450 expression level . Phytomedicine 2010; 17: 830-833
  • 44 Penzak SR, Robertson SM, Hunt JD et al. Echinacea purpurea significantly induces cytochrome P450 3A activity but does not alter lopinavir-ritonavir exposure in healthy subjects . Pharmacotherapy 2010; 30: 797-805
  • 45 Pleschka S, Stein M, Schoop R, Hudson JB. Anti-viral properties and mode of action of standardized Echinacea purpurea extract against highly pathogenic avian influenza virus (H5N1, H7N7) and swine-origin H1N1 (S-OIV) . Virol J 2009; 6: 197
  • 46 Pugh ND, Jackson CR, Pasco DS. Total bacterial load within Echinacea purpurea, determined using a new PCR-based quantification method, is correlated with LPS levels and in vitro macrophage activity . Planta Med 2013; 79: 9-14
  • 47 Raduner S, Majewska A, Chen JZ et al. Alkyl - amides from Echinacea are a new class of cannabinomimetics: Cannabinoid type 2 receptor-dependent and -independent immunomodulatory effects . J Biol Chem 2006; 281: 14192-14206
  • 48 Richter O, Hermann R. Echinacea - Interaktionen von Phytopharmaka mit konventionellen Arzneimitteln . Deutsche Apotheker Ztg 2013; 153 ((14)) 40-44
  • 49 Romiti N, Pellati F, Nieri P et al. P-glycoprotein inhibitory activity of lipophilic constituents of Echinacea pallida roots in a human proximal tubular cell line. Planta Med 2008; 74: 264-266
  • 50 Rotbart HA, Hayden FG. Picornavirus infections: a primer for the practitioner . Arch Fam Med 2000; 9: 913-920
  • 51 Saunders PR, Smith F, Schusky RW. Echinacea purpurea L in children: safety, tolerability, compliance, and clinical effectiveness in upper respiratory tract infections. Can J Physiol Pharmacol 2007; 85: 1195-1199
  • 52 Schapowal A. Efficacy and safety of Echinaforce ® in respiratory tract infections . Wien Med Wochenschr 2013; 163: 102-105
  • 53 Schneider S, Reichling J, Stintzing FC et al. Anti-herpetic properties of hydroalcoholicextracts and pressed juice from Echinacea pallida . Planta Med 2010; 76: 265-272
  • 54 Schoop R, Klein P, Suter A, Johnston SL. Echinacea in the prevention of induced rhinovirus colds: A meta-analysis . Clin Ther 2006; 28: 174-183
  • 55 Shah SA, Sander S, White CM et al. Evaluation of echinacea for the prevention and treatment of the common cold: a metaanalysis . Lancet Infect Dis 2007; 7: 473-480
  • 56 Sharma M, Anderson SA, Schoop R, Hudson JB. Induction of multiple pro-inflammatory cytokines by respiratory viruses and reversal by standardized Echinacea, a potent antiviral herbal extract . Antiviral Res 2009; 83: 165-170
  • 57 Spelman K, Iiams-Hauser K, Cech NB et al. Role for PPAR-gamma in IL-2 inhibition in T cells by Echinacea-derived undeca-2E-ene-8,10-diynoic acid isobutylamide. Int Immunopharmacol 2009; 9: 1260-1264
  • 58 Taylor JA, Weber W, Standish L et al. Efficacy and safety of Echinacea in treating upper respiratory tract infections in children: A randomized controlled trial . JAMA 2003; 290: 2824-2830
  • 59 Woelkart K, Bauer R. The role of alkamides as an active principle of Echinacea . Planta Med 2007; 73: 615-623
  • 60 Woelkart K, Dittrich P, Beubler E et al. Pharmacokinetics of the main alkamides after administration of three different Echinacea purpurea preparations in humans . Planta Med 2008; 74: 651-656
  • 61 Woelkart K, Frye RF, Derendorf H et al. Pharmacokinetics and tissue distribution of dodeca-2E,4E,8E,10E/Z-tetraenoic acid isobutylamides after oral administration in rats . Planta Med 2009; 75: 1306-1313
  • 62 Woelkart K, Koidl C, Grisold A et al. Bioavail - ability and pharmacokinetics of alkamides from the roots of Echinacea angustifolia in humans. J Clin Pharmacol 2005; 45: 683-689
  • 63 Woelkart K, Marth E, Suter A et al. Bioavailability and pharmacokinetics of Echinacea purpurea preparations and their interaction with the immune system. Int J Clin Pharmacol Ther 2006; 44: 401-408
  • 64 Woelkart K, Xu W, Pei Y et al. The endocannabinoid system as a target for alkamides from Echinacea angustifolia roots . Planta Med 2005; 71: 701-705
  • 65 Zhai Z, Solco A, Wu L et al. Echinacea increases arginase activity and has anti-inflammatory properties in RAW 264.7 macrophage cells, indicative of alternative macrophage activation . J Ethnopharmacol 2009; 122: 76-85