Klin Padiatr 2014; 226(06/07): 309-315
DOI: 10.1055/s-0034-1382021
Review
© Georg Thieme Verlag KG Stuttgart · New York

Neurofibromatosis type 1 (NF1) and Associated Tumors

Neurofibromatose Typ 1 (NF1) und assoziierte Tumoren
T. Rosenbaum
1   Duisburg Wedau Hospital, Department of Pediatrics, Duisburg, Germany
,
K. Wimmer
2   Medical University Innsbruck, Division Human Genetics, Innsbruck, Austria
› Author Affiliations
Further Information

Publication History

Publication Date:
25 July 2014 (online)

Abstract

Neurofibromatosis type 1 (NF1) is a frequent neurocutaneous syndrome that predisposes for various benign and malignant tumors. Most characteristic are neurofibromas which occur in almost all NF1 patients at some point in lifetime. Although neurofibromas are benign tumors they can be disfiguring and plexiform neurofibromas may progress to malignant peripheral nerve sheath tumors. Overall survival rates of patients with these malignant tumors are poor. Other neoplasias frequently observed in NF1 patients are pilocytic astrocytomas, gastrointestinal stromal tumors, pheochromocytomas and juvenile myelomonocytic leukemia. Several other tumors have been reported in NF1 patients but it is unclear if there is a true association between the particular tumor type and NF1. Some of these tumors might be caused by a rare recessively inherited childhood cancer syndrome termed constitutive mismatch repair deficiency syndrome which shows certain phenotypic overlap with NF1 but includes a broad spectrum of tumors which usually do not occur in NF1. The development of NF1-associated tumors is largely explained by the underlying defect of the NF1 gene which results in activation of the RAS proto-oncogene- a key mechanism of tumorigenesis. Several downstream effectors of activated RAS as well as cooperating molecular pathways have been identified. These insights provide the basis to develop novel targeted treatment strategies which are urgently needed to improve the outcome for patients with NF1-associated malignancies.

Zusammenfassung

Die Neurofibromatose Typ 1 (NF1) ist ein häufiges neurokutanes Syndrom und prädisponiert für verschiedene gut- und bösartige Tumoren. Besonders charakteristisch sind Neurofibrome, die bei fast allen Patienten irgendwann im Laufe des Lebens auftreten. Obwohl Neurofibrome gutartige Tumoren darstellen, können sie entstellend sein und plexiforme Neurofibrome können auch zu malignen periphere Nerven­scheidentumoren entarten. Die Überlebensraten von Patienten mit diesen malignen Tumoren sind schlecht. Andere Neoplasien, die oft bei NF1-Patienten auftreten, sind pilozytische Astrozytome, gastrointestinale Stromatumoren, Phäochromozytome und juvenile myelomonozytäre Leukämien. Zahlreiche weitere Tumoren wurden bei NF1-Patienten beschrieben, aber es ist unklar, ob tatsächlich ein Zusammenhang zwischen dem jeweiligen Tumor und der NF1 besteht. ­Einige dieser Tumoren können durch ein seltenes Tumorprädispositions-Syndrom, welches als konstitutives Mismatchreparatur-Defizienz Synd­rom bezeichnet wird, verursacht sein. Dieses Syndrom zeigt phänotypische Überschneidungen mit der NF1, beinhaltet aber ein breites Spektrum an Tumoren, die normalerweise nicht bei NF1 auftreten. Die Entwicklung NF1-assoziierter Tumoren kann durch den zugrundeliegenden Defekt des NF1-Gens erklärt werden, der zu einer Aktivierung des RAS-Proto-Onkogens führt und so einen Schlüsselmechanismus der Tumorgenese in Gang setzt. Zahlreiche Effektoren des aktivierten RAS-Proteins sowie kooperierende molekulare Signalwege wurden identifiziert. Diese Erkenntnisse stellen die Basis dar, auf der neue, gezielte Therapiestra­tegien entwickelt werden können, die dringend benötigt werden, um die Chancen von Patienten mit NF1-assoziierten, malignen Tumoren verbessern.

 
  • References

  • 1 Agaimy A, Vassos N, Croner RS. Gastrointestinal manifestations of neurofibromatosis type 1 (Recklinghausen’s disease): clinicopathological spectrum with pathogenetic considerations. Int J Clin Exp Pathol 2012; 5: 852-862
  • 2 Babovic-Vuksanovic D, Widemann BC, Dombi E et al. Phase I trial of pirfenidone in children with neurofibromatosis 1 and plexiform neurofibromas. Pediatr Neurolog 2007; 36: 293-300
  • 3 Balgobind BV, van Vlierberghe P, van den Ouweland AMW et al. Leukemia-associated NF1 inactivation in patients with pediatric T-ALL and AML lacking evidence for neurofibromas. Blood 2008; 111: 4322-4328
  • 4 Bausch B, Borozdin W, Mautner VF et al. Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1. J Clin Endocrinol Metab 2007; 92: 2784-2792
  • 5 Bollag G, Clapp W, Shih S et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nature Genet 1996; 12: 144-148
  • 6 Brems H, Beert E, de Ravel T et al. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol 2009; 10: 508-515
  • 7 Brokinkel B, Peetz-Dienhardt S, Ligges S et al. A comparative analysis of MAPK pathway alterations in pilocytic astrocytomas: Age-related and mutually exclusive. Neuropathol Appl Neurobiol 2014; Epub ahead of print
  • 8 Burnichon N, Buffet A, Parfait B et al. Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum Mol Genet 2012; 21: 5397-5405
  • 9 Chang T, Krisman K, Theobald EH et al. Sustained MEK inhibition abrogates myeloproliferative disease in Nf1 mutant mice. J Clin Invest 2013; 123: 335-339
  • 10 Cichowski K, Shih TS, Schmitt E et al. Mouse models of tumor development in neurofibromatosis type 1. Science 1999; 286: 2172-2176
  • 11 Cooper DN, Upadhyaya M. The germline mutational spectrum in ­neurofibromatosis type 1 and genotype-phenotype correlations. In: Upadhyaya M, Cooper D. (eds.). Neurofibromatosis type 1: Molecular and cellular biology. Springer; Heidelberg: 2012: 115-134
  • 12 De Raedt T, Brems H, Wolkenstein P et al. Elevated risk for MPNST in NF1 microdeletion patients. Am J Hum Genet 2003; 72: 1288-1292
  • 13 Evans DG, Baser ME, McGaughran J et al. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 2002; 39: 311-314
  • 14 Flotho C, Kratz CP, Niemeyer CM. How a rare pediatric neoplasia can give important insights into biological concepts: a perspective on juvenile myelomonocytic leukemia. Haematologica 2007; 92: 1441-1446
  • 15 Fluhr S, Witte T, Krombholz CF et al. Prognostic relevance of disordered epigenetic regulation in juvenile myelomonocytic leukemia. Klin Padiatr 2013; 225-A16
  • 16 Frahm S, Kurtz A, Kluwe L et al. Sulindac derivatives inhibit cell growth and induce apoptosis in primary cells from malignant peripheral nerve sheath tumors of NFI-patients. Cancer Cell International 2004; 4: 4-14
  • 17 Friedman JM, Gutmann DH, MacCollin M et al. Neurofibromatosis: phenotype, natural history, and pathogenesis. 3. Edition. Johns Hopkins University Press; Baltimore: 1999
  • 18 Gnekow AK, Kortmannn RD, Pietsch T et al. Low grade chiasmatic-hypothalamic glioma-carboplatin and vincristin chemotherapy effectively defers radiotherapy within a comprehensive treatment strategy – report from the multicenter treatment study for children and adolescents with a low grade glioma – HIT-LGG 1996 – of the Society of Pediatric Oncology and Hematology (GPOH). Klin Padiatr 2004; 216: 331-334
  • 19 Gutmann D, James CD, Poyhonen M et al. Molecular analysis of astrocytomas presenting after age 10 in individuals with NF1. Neurology 2003; 61: 1397-1400
  • 20 Gutmann D, McLellan MD, Hussain I et al. Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma. Genome Res 2013; 23: 431-439
  • 21 Hegedus B, Banerjee D, Yeh TH et al. Preclinical cancer therapy in a mouse model of neurofibromatosis-1 optic glioma. Cancer Res 2008; 68: 1520-1528
  • 22 Huttner AJ, Kieran MW, Yao X et al. Clinicopathologic study of glioblastoma in children with neurofibromatosis type 1. Pediatr Blood Cancer 2010; 54: 890-896
  • 23 Jakacki RI, Dombi E, Potter DM et al. Phase I trial of pegylated interferon-α-2b in young patients with plexiform neurofibromas. Neurology 2011; 76: 265-272
  • 24 Jessen WJ, Miller SJ, Jousma E et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest 2013; 123: 340-347
  • 25 Jouhilahti EM, Peltonen S, Callens T et al. The development of cutaneous neurofibromas. Am J Pathol 2011; 178: 500-505
  • 26 Krombholz CF, Erlacher M, Bertele D et al. Xenologous engraftment of juvenile myelomonocytic leukemia in BalbC/Rag2null/ycnull mice. Klin Padiatr 2013; 225-A21
  • 27 Le QL, Liu C, Shipman T et al. Susceptible stages in Schwann cells for NF1-associated plexiform neurofibroma development. Cancer Res 2011; 71: 4686-4695
  • 28 Lee DY, Yeh TH, Emnett RJ et al. Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev 2010; 24: 2317-2329
  • 29 Legius E, Dierick H, Wu R et al. P53 mutations are frequent in malignant NF1 tumors. Genes Chromosomes Cancer 1994; 10: 250-255
  • 30 Maertens O, Prenen H, Debiec-Richter M et al. Molecular pathogenesis of multiple gastrointestinal stromal tumors in NF1 patients. Hum Mol Genet 2006; 15: 1015-1023
  • 31 Madanikia SA, Bergner A, Ye X et al. Increased risk of breast cancer in women with NF1. Am J Med Genet A 2012; 158A: 3056-3060
  • 32 Maris JM, Wiersma SR, Mahgoub N. Monosomy 7 myelodysplastic syndrome and other second malignant neoplasms in children with neurofibromatosis type 1. Cancer 1997; 79: 1438-1446
  • 33 Mussi C, Schildhaus HU, Gronchi A et al. Therapeutic consequences from molecular biology for gastrointestinal stromal tumor patients affected by neurofibromatosis type 1. Clin Cancer Res 2008; 14: 4550-4555
  • 34 Niemeyer CM, Aricó M, Basso G et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. Blood 1997; 10: 3534-3543
  • 35 Niemeyer CM, Kang MW, Shin DH et al. Germline CBL mutations cause developmental abnormalities and predispose to juvenile myelomonocytic leukemia. Nat Genet 2010; 42: 794-800
  • 36 Niethammer D, Bader T, Handgretinger R et al. Stem cell transplantation. Klin Padiatr 2013; 225: 94-96
  • 37 Origone P, Defferrari R, Mazzocco K et al. Homozygous inactivation of NF1 gene in a patient with familial NF1 and disseminated neuroblastoma. Am J Med Genet A 2003; 118A: 309-313
  • 38 Overdiek A, Feifel H, Schaper J et al. Diagnostic delay in hemifacial hypertrophy due to plexiform neurofibromas. Brain Dev 2006; 28: 275-280
  • 39 Paulson V, Chandler G, Rakheja D et al. High-resolution array CGH identifies common mechanisms that drive embryonal rhabdomyosarcoma pathogenesis. Genes Chromosomes Cancer 2011; 50: 397-408
  • 40 Peltonen J, Jaakkola S, Lebwohl M et al. Cellular differentiation and expression of matrix genes in type 1 neurofibromatosis. Lab Invest 1988; 59: 760-771
  • 41 Rasmussen SA, Yang Q, Friedman JM. Mortality in neurofibromatosis 1: an analysis using US death certificates. Am J Hum Genet 2001; 68: 1110-1118
  • 42 Robertson KA, Nalepa G, Yang FC et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol 2012; 13: 1218-1224
  • 43 Rosenbaum T, Rosenbaum C, Winner U et al. Long-term culture and characterization of human neurofibroma-derived Schwann cells. J Neurosci Res 2000; 61: 524-532
  • 44 Seminog OO, Goldacre MJ. Risk of benign tumours of nervous system, and of malignant neoplasms, in people with neurofibromatosis: population-based record-linkage study. Br J Cancer 2013; 108: 193-198
  • 45 Serra E, Rosenbaum T, Winner U et al. Schwann cells are the NF1 (-/-) cells in neurofibromas: evidence of two different Schwann cell subpopulations. Hum Mol Genet 2000; 9: 3055-3064
  • 46 Sharif S, Ferner R, Birch JM et al. Second primary tumors in neurofibromatosis 1 patients treated for optic glioma: substantial risks after radiotherapy. J Clin Oncol 2006; 24: 2570-2575
  • 47 Side L, Taylor B, Cayouette M et al. Homozygous inactivation of the NF1 gene in bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders. N Engl J Med 1997; 336: 1713-1720
  • 48 Solga AC, Gutmann DH. NF1-associated optic glioma. In: Upadhyaya M, Cooper D. (eds.). Neurofibromatosis type 1: Molecular and cellular biology. Springer; Heidelberg: 2012: 341-352
  • 49 Thomas L, Mautner VF, Cooper DN et al. Molecular heterogeneity in malignant peripheral nerve sheath tumors associated with neurofibromatosis type1. Human Genomics 2012; 6: 18-25
  • 50 Tischler AS, Shih TS, Williams BO et al. Characterization of pheochromocytomas in a mouse strain with a targeted disruptive mutation of the neurofibromatosis gene Nf1. Endocr Pathol 1995; 6: 323-335
  • 51 Welander J, Larsson C, Bäckdahl M et al. Integrative genomics reveals frequent somatic NF1 mutations in sporadic pheochromocytomas. Hum Mol Genet 2012; 21: 5406-5416
  • 52 Weiss BA. Phase 2 Study of the mTOR Inhibitor Sirolimus in Plexiform Neurofibromas (PNs) in Children and Adults with Neurofibromatosis Type 1 (NF1). CTF Conference 2013, Monterey, CA, Programbook p36
  • 53 Widemann BA. Phase I Study of the MEK1 Inhibitor AZD6244 Hydrogen Sulfate (Selumetinib Sulfate) in Children and Young Adults with Neurofibromatosis Type 1 (NF1) and Inoperable Plexiform Neurofibromas (PNs). CTF Conference 2013, Monterey, CA, Programbook p37
  • 54 Wimmer K, Kratz CP, Vasen HF et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium “care for CMMRD (C4CMMRD). J Med Genet 2014; epub ahead of print
  • 55 Yan N, Ricca C, Fletcher J et al. Farnesyltransferase inhibitors block the neurofibromatosis type I (NF1) malignant phenotype. Cancer Res 1995; 55: 3569-3575
  • 56 Yang FC, Ingram DA, Chen S et al. Nf1-dependent tumors require a microenvironment containing Nf1+/-- and c-kit-dependent bone marrow. Cell 2008; 135: 437-448
  • 57 Zehou O, Fabre E, Zelek L et al. Chemotherapy for the treatment of malignant peripheral nerve sheath tumors in neurofibromatosis1: a 10-year institutional review. Orphanet Journal of Rare Diseases 2013; 8: 127-133
  • 58 Zhu Y, Ghosh P, Charnay P et al. Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 2002; 296: 920-922
  • 59 Zöller MET, Rembeck B, Odén A et al. Malignant and benign tumors in patients with neurofibromatosis type 1 in a defined Swedish population. Cancer 1997; 79: 2125-2131
  • 60 Zvulunov A, Barak Y, Metzker A. Juvenile xanthogranuloma, neurofibromatosis and juvenile chronic myelogenous leukemia. World statistical analysis. Arch Dermatol 1995; 131: 904-908