Klinische Neurophysiologie 2014; 45(03): 144-150
DOI: 10.1055/s-0034-1382071
Alois-Kornmüller-Preis 2014
© Georg Thieme Verlag KG Stuttgart · New York

Zerebello-temporale Konnektivität während visueller Wahrnehmung von Körperbewegungen

Cerebello-temporal Connectivity during Visual Perception of Body Motion
A. A. Sokolov
1   Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Schweiz
,
M. Erb
2   Abteilung für Biomedizinische Magnetresonanz, Universitätsklinik Tübingen
,
M. S. Tatagiba
3   Klinik für Neurochirurgie, Universitätsklinik Tübingen
,
W. Grodd
4   Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Universitätsklinikum Aachen
,
R. S. J. Frackowiak
1   Département des Neurosciences Cliniques, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Schweiz
,
M. A. Pavlova
2   Abteilung für Biomedizinische Magnetresonanz, Universitätsklinik Tübingen
› Author Affiliations
Further Information

Publication History

Publication Date:
09 September 2014 (online)

Zusammenfassung

Die visuelle Wahrnehmung von Bewegungen unserer Mitmenschen ist in unserem Alltag von großer Bedeutung, sei es beim Autofahren oder bei non-verbaler Kommunikation. Während sich zahlreiche Studien mit dem kortikalen System für visuelle Wahrnehmung von Körperbewegungen beschäftigt haben, blieb der Beitrag subkortikaler Strukturen weitgehend ungeklärt. Ausgehend von ersten Läsionsbefunden bei neurochirurgischen Patienten, die auf die Eloquenz des linken lateralen Kleinhirns hinwiesen, konnten wir mittels funktioneller Magnetresonanztomografie (fMRT) eine Beteiligung der links lateralen zerebellären Läppchen Crus I und VIIB an der visuellen Wahrnehmung von Körperbewegungen zeigen. Dynamic Causal Modelling (DCM) weist auf reziproke effektive Konnektivität zwischen dem linken lateralen Kleinhirn und dem rechten superioren temporalen Sulcus (STS), dem Eckpfeiler des Netzwerks für biologische Bewegungswahrnehmung, hin. Diffusion Tensor Imaging (DTI) liefert erste Hinweise auf eine direkte reziproke Faserbahnverbindung zwischen Kleinhirn und STS. Die Befunde eröffnen neue Perspektiven in der neurologischen und psychiatrischen Forschung.

Abstract

Visual perception of others’ movements is of great value for daily life activities, e. g., for safe car driving or non-verbal communication. While the cortical system for visual perception of body motion has been addressed in a number of studies, the contribution of subcortical structures remains largely unclear. Based on le­sion findings in neurosurgical patients indicating eloquence of the left lateral cerebellum, by using functional magnetic resonance imaging (fMRI), we could demonstrate that the left lateral cerebellar lobules Crus I and VIIB are involved in visual processing of body motion. Dynamic causal modelling (DCM) suggests a reciprocal effective connectivity between the left lateral cerebellum and the right superior temporal sulcus (STS), the cornerstone of the network for biological motion perception. Diffusion tensor imaging (DTI) provides the first evidence for a direct bi­directional fibre pathway between the cerebe­llum and STS. These findings open a new window for future neurological and psychiatric research.

 
  • Literatur

  • 1 Pavlova MA. Biological motion processing as a hallmark of social cognition. Cereb Cortex 2012; 22: 981-995
  • 2 Koldewyn K, Whitney D, Rivera SM. The psychophysics of visual mo­tion and global form processing in autism. Brain 2010; 133: 599-610
  • 3 Puce A, Perrett D. Electrophysiology and brain imaging of biological motion. Philosophical Transactions of the Royal Society B: Biological Sciences 2003; 358: 435-445
  • 4 Blake R, Shiffrar M. Perception of human motion. Annu Rev Psychol 2007; 58: 47-73
  • 5 Bonda E, Petrides M, Ostry D et al. Specific involvement of human parietal systems and the amygdala in the perception of biological motion. J Neurosci 1996; 16: 3737-3744
  • 6 Grossman E, Donnelly M, Price R et al. Brain areas involved in perception of biological motion. J Cogn Neurosci 2000; 12: 711-720
  • 7 Vaina LM, Solomon J, Chowdhury S et al. Functional neuroanatomy of biological motion perception in humans. Proc Natl Acad Sci USA 2001; 98: 11656-11661
  • 8 Petersen SE, Fox PT, Posner MI et al. Positron emission tomographic studies of the processing of single words. J Cogn Neurosci 1989; 1: 153-170
  • 9 Allen G, Buxton RB, Wong EC et al. Attentional activation of the cerebellum independent of motor involvement. Science 1997; 275: 1940-1943
  • 10 Gruber O. Effects of domain-specific interference on brain activation associated with verbal working memory task performance. Cereb Cortex 2001; 11: 1047-1055
  • 11 Nawrot M, Rizzo M. Motion perception deficits from midline cerebellar lesions in human. Vision Res 1995; 35: 723-731
  • 12 Kaas JH, Collins CE. The organization of sensory cortex. Curr Opin Neurobiol 2001; 11: 498-504
  • 13 Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci 2009; 32: 413-434
  • 14 Brodal A. Proceedings: What does the anatomical organization of the cerebrocerebellar connections tell us about their function and clinical importance?. Acta Neurochir (Wien) 1975; 31: 265
  • 15 Pavlova M, Lutzenberger W, Sokolov A et al. Dissociable cortical processing of recognizable and non-recognizable biological movement: analysing gamma MEG activity. Cereb Cortex 2004; 14: 181-188
  • 16 Sokolov AA, Gharabaghi A, Tatagiba MS et al. Cerebellar engagement in an action observation network. Cereb Cortex 2010; 20: 486-491
  • 17 Knecht S, Drager B, Deppe M et al. Handedness and hemispheric language dominance in healthy humans. Brain 2000; 123 (Pt 12) 2512-2518
  • 18 Pavlova M, Guerreschi M, Lutzenberger W et al. Cortical response to social interaction is affected by gender. Neuroimage 2010; 50: 1327-1332
  • 19 Sokolov AA, Erb M, Gharabaghi A et al. Biological motion processing: The left cerebellum communicates with the right superior temporal sulcus. Neuroimage 2012; 59: 2824-2830
  • 20 Ramnani N, Behrens TE, Johansen-Berg H et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex 2006; 16: 811-818
  • 21 Kleinschmidt A, Merboldt KD, Hanicke W et al. Correlational imaging of thalamocortical coupling in the primary visual pathway of the human brain. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism 1994; 14: 952-957
  • 22 Glickstein M, Gerrits N, Kralj-Hans I et al. Visual pontocerebellar projections in the macaque. J Comp Neurol 1994; 349: 51-72
  • 23 Schmahmann JD, Pandya DN. Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J Comp Neurol 1991; 308: 224-248
  • 24 O’Reilly JX, Beckmann CF, Tomassini V et al. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 2010; 20: 953-965
  • 25 Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage 2003; 19: 1273-1302
  • 26 Stephan KE, Penny WD, Daunizeau J et al. Bayesian model selection for group studies. Neuroimage 2009; 46: 1004-1017
  • 27 Sokolov AA, Erb M, Grodd W et al. Structural loop between the cerebellum and the superior temporal sulcus: evidence from diffusion tensor imaging. Cereb Cortex 2014; 24: 626-632
  • 28 Ciccarelli O, Parker GJ, Toosy AT et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study. Neuroimage 2003; 18: 348-359
  • 29 Barnea-Goraly N, Kwon H, Menon V et al. White matter structure in autism: preliminary evidence from diffusion tensor imaging. Biol Psychiatry 2004; 55: 323-326
  • 30 Kanaan RA, Borgwardt S, McGuire PK et al. Microstructural organization of cerebellar tracts in schizophrenia. Biol Psychiatry 2009; 66: 1067-1069
  • 31 Blake R, Turner LM, Smoski MJ et al. Visual recognition of biological motion is impaired in children with autism. Psychol Sci 2003; 14: 151-157
  • 32 Kim J, Doop ML, Blake R et al. Impaired visual recognition of biological motion in schizophrenia. Schizophr Res 2005; 77: 299-307
  • 33 Catani M, Jones DK, Daly E et al. Altered cerebellar feedback projections in Asperger syndrome. Neuroimage 2008; 41: 1184-1191
  • 34 Kaiser MD, Hudac CM, Shultz S et al. Neural signatures of autism. Proc Natl Acad Sci USA 2010; 107: 21223-21228
  • 35 Baumann O, Greenlee MW. Neural correlates of coherent audiovisual motion perception. Cereb Cortex 2007; 17: 1433-1443
  • 36 Gobbini MI, Koralek AC, Bryan RE et al. Two takes on the social brain: a comparison of theory of mind tasks. J Cogn Neurosci 2007; 19: 1803-1814
  • 37 Jack A, Englander ZA, Morris JP. Subcortical contributions to effective connectivity in brain networks supporting imitation. Neuropsychologia 2011; 49: 3689-3698
  • 38 Ackermann H, Mathiak K, Riecker A. The contribution of the cerebellum to speech production and speech perception: clinical and functional imaging data. Cerebellum 2007; 6: 202-213
  • 39 Helmchen C, Klinkenstein J, Machner B et al. Structural changes in the human brain following vestibular neuritis indicate central vestibular compensation. Ann N Y Acad Sci 2009; 1164: 104-115
  • 40 Boop S, Wheless J, Van Poppel K et al. Cerebellar seizures. Journal of neurosurgery Pediatrics 2013; 12: 288-292
  • 41 Oyegbile TO, Bayless K, Dabbs K et al. The nature and extent of cerebellar atrophy in chronic temporal lobe epilepsy. Epilepsia 2011; 52: 698-706
  • 42 Pavlova M, Krageloh-Mann I, Sokolov A et al. Recognition of point-light biological motion displays by young children. Perception 2001; 30: 925-933
  • 43 Baumann O, Borra RJ, Bower JM et al. Consensus paper: Roles of the cerebellum in perception. Cerebellum. in prep.