Planta Med 2014; 80(11): 861-869
DOI: 10.1055/s-0034-1382861
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Erythroidine Alkaloids: A Novel Class of Phytoestrogens

Sefirin Djiogue
1   Division of Pharmacognosy & Natural Products Chemistry, Department of Pharmacy, University of Athens, Athens, Greece
2   Molecular Cell Physiology & Endocrinology, Technische Universität, Dresden, Germany
3   Laboratory of Animal Physiology, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaounde, Cameroon
,
Maria Halabalaki
1   Division of Pharmacognosy & Natural Products Chemistry, Department of Pharmacy, University of Athens, Athens, Greece
,
Dieudonné Njamen
3   Laboratory of Animal Physiology, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaounde, Cameroon
,
Georg Kretzschmar
2   Molecular Cell Physiology & Endocrinology, Technische Universität, Dresden, Germany
,
George Lambrinidis
4   Division of Pharmaceutical Chemistry, Department of Pharmacy, Athens, Greece
,
Josephine Hoepping
2   Molecular Cell Physiology & Endocrinology, Technische Universität, Dresden, Germany
,
Francesca M. Raffaelli
2   Molecular Cell Physiology & Endocrinology, Technische Universität, Dresden, Germany
,
Emmanuel Mikros
4   Division of Pharmaceutical Chemistry, Department of Pharmacy, Athens, Greece
,
Alexios-Leandros Skaltsounis
1   Division of Pharmacognosy & Natural Products Chemistry, Department of Pharmacy, University of Athens, Athens, Greece
,
Günter Vollmer
2   Molecular Cell Physiology & Endocrinology, Technische Universität, Dresden, Germany
› Author Affiliations
Further Information

Publication History

received 27 March 2013
revised 11 June 2014

accepted 14 June 2014

Publication Date:
12 August 2014 (online)

Abstract

Erythrina poeppigiana is a medicinal plant which is widely used in Asia, Latin America, and Africa in traditional remedies for gynecological complications and maladies. In continuation of studies for the discovery of novel phytoestrogens, four erythroidine alkaloids, namely α-erythroidine, β-erythroidine, and their oxo-derivatives 8-oxo-α-erythroidine and 8-oxo-β-erythroidine, were isolated and structurally characterized from the methanolic extract of the stem bark of E. poeppigiana. Due to the high amounts of erythroidines in the extract and considering the widespread utilization of Erythrina preparations in traditional medicine, the exploration of their estrogenic properties was performed. The estrogenicity of the isolated erythroidines was assayed in various estrogen receptor-(ER)-dependent test systems, including receptor binding affinity, cell culture based ER-dependent reporter gene assays, and gene expression studies in cultured cells using reverse transcription polymerase chain reaction techniques. α-Erythroidine and β-erythroidine showed binding affinity values for ERα of 0.015 ± 0.010 % and 0.005 ± 0.010 %, respectively, whereas only β-erythroidine bound to ERβ (0.006 ± 0.010 %). In reporter gene assays, both erythroidines exhibited a significant dose-dependent estrogenic stimulation of ER-dependent reporter gene activity in osteosarcoma cells detectable already at 10 nM. Results were confirmed in the MVLN cells, a bioluminescent variant of MCF-7 breast cancer cells. Further, α-erythroidine and β-erythroidine both induced the enhanced expression of the specific ERα-dependent genes trefoil factor-1 and serum/glucocorticoid regulated kinase 3 in MCF-7 cells, confirming estrogenicity. Additionally, using molecular docking simulations, a potential mode of binding on ERα, is proposed, supporting the experimental evidences. This is the first time that an estrogenic profile is reported for erythroidine alkaloids, potentially a new class of phytoestrogens.

Supporting Information

 
  • References

  • 1 Bussmann RW. Ethnobotany of the Samburu of Mt. Nyiru, South Turkana, Kenya. J Ethnobiol Ethnomed 2006; 2: 35
  • 2 WHO. WHO calls on African governments to formally recognize traditional medicine, 31 August 2003, Johannesburg, South Africa. Geneva: WHO; 2003
  • 3 Magne Ndé C, Njamen D, Tanee Fomum S, Wandji J, Simpson E, Clyne C, Vollmer G. In vitro estrogenic activity of two major compounds from the stem bark of Erythrina lysistemon (Fabaceae). Eur J Pharmacol 2012; 674: 87-94
  • 4 Kone WM, Solange KN, Dosso M. Assessing sub-Saharan Erythrina for efficacy: traditional uses, biological activities and phytochemistry. Pak J Biol Sci 2011; 14: 560-571
  • 5 Hegde HV, Hegde GR, Kholkute SD. Herbal care for reproductive health: ethno medicobotany from Uttara Kannada district in Karnataka, India. Complement Ther Clin Pract 2007; 13: 38-45
  • 6 Djiogue S, Halabalaki M, Alexi X, Njamen D, Fomum ZT, Alexis MN, Skaltsounis AL. Isoflavonoids from Erythrina peppigiana: evaluation of their binding affinity for the estrogen receptor. J Nat Prod 2009; 72: 1603-1607
  • 7 Djiogue S, Njamen D, Halabalaki M, Kretzschmar G, Beyer A, Mbanya JC, Skaltsounis AL, Vollmer G. Estrogenic properties of naturally occuring prenylated isoflavones in U2OS human osteosarcoma cells: Structure-activity relationships. J Steroid Biochem Mol Biol 2010; 120: 184-191
  • 8 Ososki AL, Kennelly EJ. Phytoestrogens: a review of the present state of research. Phytother Res 2003; 17: 845-869
  • 9 Ng PC, Ho DD, Ng KH, Kong YC, Cheng KF, Stone G. Mixed estrogenic and anti-estrogenic activities of yuechukene – a bis-indole alkaloid. Eur J Pharmacol 1994; 264: 1-12
  • 10 Nazrullaev SS, Bessonova IA, Akhmedkhodzaeva KHS. Estrogenic activity as a function of chemical structure in Haplophyllum quinoline alkaloids. Chem Nat Compd 2001; 37: 551-555
  • 11 Allred KF, Yackley KM, Vanamala J, Allred CD. Trigonelline is a novel phytoestrogen in coffee beans. J Nutr 2009; 139: 1833-1838
  • 12 Aguilar MI, Giral F, Espejo O. Alkaloids from the flowers of Erythrina americana . Phytochemistry 1981; 20: 2061-2062
  • 13 Chawla AS, Redha FM, Jackson AH. Alkaloids in seeds of four Erythrina species. Phytochemistry 1985; 24: 1821-1823
  • 14 Demirpence E, Duchesne MJ, Badia E, Gagne D, Pons M. MVLN cells: a bioluminescent MCF-7-derived cell line to study the modulation of estrogenic activity. J Steroid Biochem Mol Biol 1993; 46: 355-364
  • 15 Möller F, Zierau O, Jandausch A, Rettenberger R, Kaszkin-Bettag M, Vollmer G. Subtype-specific activation of estrogen receptors by a special extract of Rheum rhaponticum (ERr 731R), its aglycones and structurally related compounds in U2OS human osteosarcoma cells. Phytomedicine 2007; 14: 716-726
  • 16 Lambrinidis G, Halabalaki M, Katsanou ES, Skaltsounis AL, Alexis MN, Mikros E. The estrogen receptor and polyphenols: molecular simulation studies of their interactions, a review. Environ Chem Lett 2006; 4: 159-174
  • 17 Reimann E. Synthesis pathways to Erythrina alkaloids and Erythrina type compounds. In: Herz W, Falk H, Kirby GW, eds. Progress in the chemistry of organic natural products. Wien, New York: Springer; 2007: 1-56
  • 18 Hanson AW. The crystal structure of dihydro-β-erythroidine hydrobromide. Acta Cryst 1963; 16: 939-942
  • 19 Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 1998; 139: 4252-4263
  • 20 Meyers MJ, Sun J, Carlson KE, Marriner GA, Katzenellenbogen BS, Katzenellenbogen JA. Estrogen receptor-beta potency-selective ligands: structure-activity relationship studies of diarylpropionitriles and their acetylene and polar analogues. J Med Chem 2001; 44: 4230-4251
  • 21 Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs jr. DR, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, Zoeller RT, Myers JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocrine Rev 2012; 33: 378-455
  • 22 Jakowlew SB, Breathnach R, Jeltsch JM, Masiakowski P, Chambon P. Sequence of the pS2 mRNA induced by estrogen in the human breast cancer cell line MCF-7. Nucleic Acids Res 1984; 12: 2861-2877
  • 23 Rio MC, Bellocq JP, Gairard B, Rasmussen UB, Krust A, Koehl C, Calderoli H, Schiff V, Renaud R, Chambon P. Specific expression of the pS2 gene in subclasses of breast cancers in comparison with expression of the estrogen and progesterone receptors and the oncogene ERBB2. Proc Natl Acad Sci U S A 1987; 84: 9243-9247
  • 24 Kim J, Petz LN, Ziegler YS, Wood JR, Potthoff SJ, Nardulli AM. Regulation of the estrogen-responsive pS2 gene in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 2000; 74: 157-168
  • 25 Wang Y, Zhou D, Phung S, Masri S, Smith D, Chen S. SGK3 is an estrogen-inducible kinase promoting estrogen-mediated survival of breast cancer cells. Mol Endocrinol 2011; 25: 72-82
  • 26 Njamen D, Djiogue S, Zingue S, Mvondo MA, Nkeh-Chungag B. In vivo and in vitro estrogenic activity of extracts from Erythrina poeppigiana (Fabaceae). J Complement Integr Med 2013; 10: 1-11
  • 27 Tanaka H, Oh-Uchi T, Etoh H, Shimizu H, Tateishi Y. Isoflavonoids from the roots of Erythrina poeppigiana . Phytochemistry 2002; 60: 789-794
  • 28 Tanaka H, Oh-Uchi T, Etoh H, Sako M, Sato M, Fukai T, Tateishi Y. An arylbenzofuran and four isoflavonoids from the roots of Erythrina poeppigiana . Phytochemistry 2003; 63: 597-602
  • 29 Barton DHR, Gunatilaka AL, Letcher RM, Lobo AMF, Widdowson DA. Phenol oxidation and biosynthesis. Part XXII. The alkaloids of Erythrina lysistemon, E. abyssinica, E. poeppigiana, E. fusca, and E. lithosperma; the structure of erythratidine. Chem Soc Perkin Trans I 1973; 1: 874-880
  • 30 Tanaka H, Etoh H, Shimizu H, Oh-Uchi T, Terada Y, Tateishi Y. Erythrinan alkaloids and isoflavonoids from Erythrina poeppigiana . Planta Med 2001; 67: 871-873
  • 31 Halabalaki M, Alexi X, Aligiannis N, Lambrinidis G, Pratsinis H, Florentin I, Mitakou S, Mikros E, Skaltsounis AL, Alexis MN. Estrogenic activity of isoflavonoids from Onobrychis ebenoides . Planta Med 2006; 72: 488-493
  • 32 Mueller SO, Simon S, Chae K, Metzler M, Korach KS. Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERalpha) and ERbeta in human cells. Toxicol Sci 2004; 80: 14-25
  • 33 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63
  • 34 Wakeling AE, Bowler J. Steroidal pure antiestrogens. J Endocrinol 1987; 112: R7-R10
  • 35 Winer J, Jung CK, Shackel I, Williams PM. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro . Anal Biochem 1999; 270: 41-49