Planta Med 2014; 80(13): 1107-1112
DOI: 10.1055/s-0034-1382960
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Isolation, Characterization, and Antitumor Activity of a Novel Heteroglycan from Cultured Mycelia of Cordyceps sinensis

Yu-xia Mei
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
,
Wei Yang
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
,
Pei-xin Zhu
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
,
Nan Peng
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
,
Hai Zhu
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
,
Yun-xiang Liang
State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
› Author Affiliations
Further Information

Publication History

received 02 February 2014
revised 29 June 2014

accepted 13 July 2014

Publication Date:
15 August 2014 (online)

Abstract

A novel heteroglycan, Cordyceps sinensis polysaccharide 1 (molecular weight 1 17 × 105 Da), was isolated and purified from mycelia of the fungus C. sinensis obtained by solid-state culture. Structural characterization by chemical analysis, GC-MS, FTIR, and NMR spectroscopy showed that C. sinensis polysaccharide 1 was mainly composed of (1 → 6)-linked α-D-Glc and α-D-Gal, with minor β-(1 → 4)-D-Xyl and β-(1 → 4)-D-Man residues probably located in the side chains with a trace amount of α-(1 → 3)-L-Rha residue. In biological assays, C. sinensis polysaccharide 1 significantly inhibited proliferation of sarcoma 180 cells and induced apoptosis in a dose-dependent manner. Further studies will elucidate the antitumor mechanism of C. sinensis polysaccharide 1 and promote its utilization for the development of novel, effective anticancer drugs.

Supporting Information

 
  • References

  • 1 Mann J. Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2002; 2: 143-148
  • 2 Sung GH, Hywel-Jones NL, Sung JM, Luangsa-Ard JJ, Shrestha B, Spatafora JW. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 2007; 57: 5-59
  • 3 Chen SG, Siu KC, Wang WQ, Liu XX, Wu JY. Structure and antioxidant activity of a novel poly-N-acetylhexosamine produced by a medicinal fungus. Carbohydr Polym 2013; 94: 332-338
  • 4 Sheng L, Chen J, Li J, Zhang W. An exopolysaccharide from cultivated Cordyceps sinensis and its effects on cytokine expressions of immunocytes. Appl Biochem Biotechnol 2011; 163: 669-678
  • 5 Song D, He Z, Wang C, Yuan F, Dong P, Zhang W. Regulation of the exopolysaccharide from an anamorph of Cordyceps sinensis on dendritic cell sarcoma (DCS) cell line. Eur J Nutr 2013; 52: 687-694
  • 6 Bok JW, Lermer L, Chilton J, Klingeman HG, Towers GH. Antitumor sterols from the mycelia of Cordyceps sinensis . Phytochemistry 1999; 51: 891-898
  • 7 Yoshikawa N, Nakamura K, Yamaguchi Y, Kagota S, Shinozuka K, Kunitomo M. Antitumour activity of cordycepin in mice. Clin Exp Pharmacol Physiol 2004; 31 (Suppl. 02) S51-S53
  • 8 Xiao JH, Zhong JJ. Secondary metabolites from Cordyceps species and their antitumor activity studies. Recent Pat Biotechnol 2007; 1: 123-137
  • 9 Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol 2002; 60: 258-274
  • 10 Zhong S, Pan HJ, Fan LF, Lv GY, Wu YZ, Parmeswaran B, Pandey A, Soccol CR. Advances in research of polysaccharides in Cordyceps species. Food Technol Biotech 2009; 47: 304-312
  • 11 Zhou X, Gong Z, Su Y, Lin J, Tang K. Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol 2009; 61: 279-291
  • 12 Yue K, Ye M, Zhou ZJ, Sun W, Lin X. The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol 2013; 65: 474-493
  • 13 Li X, Jiao L, Zhang X, Tian W, Chen S, Zhang L. Structure of polysaccharides from mycelium and culture medium of Phellinus nigricans using submerged fermentation. Sci China C Life Sci 2008; 51: 513-519
  • 14 Mondal S, Chakraborty I, Pramanik M, Rout D, Islam SS. Structural studies of water-soluble polysaccharides of an edible mushroom, Termitomyces eurhizus. A reinvestigation. Carbohydr Res 2004; 339: 1135-1140
  • 15 Cheng HN, Neiss TG. Solution NMR spectroscopy of food polysaccharides. Polymer Rev 2012; 52: 81-114
  • 16 Zhang M, Cui SW, Cheung PCK, Wang Q. Antitumor polysaccharides from mushrooms: a review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci Tech 2007; 18: 4-19
  • 17 Wu YL, Sun CR, Pan YJ. Studies on isolation and structural features of a polysaccharide from the mycelium of an Chinese edible fungus (Cordyceps sinensis). Carbohydr Polym 2006; 63: 251-256
  • 18 Nie SP, Cui SW, Phillips AO, Xie MY, Phillips GO, Al-Assaf S, Zhang XL. Elucidation of the structure of a bioactive hydrophilic polysaccharide from Cordyceps sinensis by methylation analysis and NMR spectroscopy. Carbohydr Polym 2011; 84: 894-899
  • 19 Wang ZM, Peng XA, Lee KLD, Tang JCO, Cheung PCK, Wu JY. Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem 2011; 125: 637-643
  • 20 Wu FY, Yan H, Ma XN, Jia JQ, Zhang GZ, Guo XJ, Gui ZZ. Comparison of the structural characterization and biological activity of acidic polysaccharides from Cordyceps militaris cultured with different media. World J Microb Biot 2012; 28: 2029-2038
  • 21 Ohmori T, Tamura K, Ohgane N, Nakamura T, Kawanishi G, Yamada H, Nomoto K. The correlation between molecular weight and antitumor activity of galactosaminoglycan (CO-N) from Cordyceps ophioglossoides . Chem Pharm Bull 1989; 37: 1337-1340
  • 22 Ji NF, Yao LS, Li Y, He W, Yi KS, Huang M. Polysaccharide of Cordyceps sinensis enhances cisplatin cytotoxicity in non-small cell lung cancer H157 cell line. Integr Cancer Ther 2011; 10: 359-367
  • 23 Bohn JA, BeMiller JN. (1 → 3)-β-d-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 1995; 28: 3-14
  • 24 Wu YL, Ishurd O, Sun CR, Pan YJ. Structure analysis and antitumor activity of (1 -> 3)-beta-D-glucans (Cordyglucans) from the mycelia of Cordyceps sinensis . Planta Med 2005; 71: 381-384
  • 25 Peng Y, Zhang L, Zeng F, Kennedy JF. Structure and antitumor activities of the water-soluble polysaccharides from Ganoderma tsugae mycelium. Carbohydr Polym 2005; 59: 385-392
  • 26 Yang J, Zhang W, Shi P, Chen J, Han X, Wang Y. Effects of exopolysaccharide fraction (EPSF) from a cultivated Cordyceps sinensis fungus on c-Myc, c-Fos, and VEGF expression in B16 melanoma-bearing mice. Pathol Res Pract 2005; 201: 745-750
  • 27 Xue Q, Sun J, Zhao MW, Zhang KY, Lai R. Immunostimulatory and anti-tumor activity of a water-soluble polysaccharide from Phellinus baumii mycelia. World J Microb Biot 2011; 27: 1017-1023
  • 28 Xiao JH, Zhong JJ. Inhibitory effect of polysaccharides produced by medicinal macrofungus Cordyceps jiangxiensis on cancer cells via apoptotic pathway and cell cycle arrest. J Food Agric Environ 2008; 6: 61-67
  • 29 Lee SH, Hwang HS, Yun JW. Production of polysaccharides by submerged mycelial culture of entomopathogenic fungus Cordyceps takaomontana and their apoptotic effects on human neuroblastoma cells. Korean J Chem Eng 2009; 26: 1075-1083
  • 30 Zhang AL, Lu JH, Zhang N, Zheng D, Zhang GR, Teng LR. Extraction, purification and anti-tumor activity of polysaccharide from mycelium of mutant Cordyceps militaris . Chem Res Chin Univ 2010; 26: 798-802
  • 31 Hengartner MO. The biochemistry of apoptosis. Nature 2000; 407: 770-776
  • 32 Xu QS, Dou HL, Wei P, Tan CY, Yun XJ, Wu YH, Bal XF, Ma XJ, Du YG. Chitooligosaccharides induce apoptosis of human hepatocellular carcinoma cells via up-regulation of Bax. Carbohydr Polym 2008; 71: 509-514
  • 33 Sliva D, Jedinak A, Kawasaki J, Harvey K, Slivova V. Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling. Brit J Cancer 2008; 98: 1348-1356
  • 34 Dubois M, Gilles KA, Hamilton JK, Pebers PA, Simth F. Colorimetric method for the determination of sugars and related substances. Anal Chem 1956; 28: 350-356
  • 35 Dodgson KS, Price RG. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem J 1962; 84: 106
  • 36 Mei YX, Chen HX, Zhang J, Zhang XD, Liang YX. Protective effect of chitooligosaccharides against cyclophosphamide-induced immunosuppression in mice. Int J Biol Macromol 2013; 62: 330-335
  • 37 Wang Y, Wang M, Ling Y, Fan WQ, Wang YF, Yin HP. Structural determination and antioxidant activity of a polysaccharide from the fruiting bodies of cultured Cordyceps sinensis . Am J Chinese Med 2009; 37: 977-989
  • 38 Linker A, Evans LR, Impallomeni G. The structure of a polysaccharide from infectious strains of Burkholderia cepacia . Carbohydr Res 2001; 335: 45-54