RSS-Feed abonnieren
DOI: 10.1055/s-0034-1383058
Folate Metabolism and Human Reproduction
Folatmetabolismus und menschliche FortpflanzungPublikationsverlauf
received 31. Juli 2014
revised 13. August 2014
accepted 14. August 2014
Publikationsdatum:
25. September 2014 (online)
Abstract
Folate metabolism affects ovarian function, implantation, embryogenesis and the entire process of pregnancy. In addition to its well-established effect on the incidence of neural tube defects, associations have been found between reduced folic acid levels and increased homocysteine concentrations on the one hand, and recurrent spontaneous abortions and other complications of pregnancy on the other. In infertility patients undergoing IVF/ICSI treatment, a clear correlation was found between plasma folate concentrations and the incidence of dichorionic twin pregnancies. In patients supplemented with 0.4 mg/d folic acid undergoing ovarian hyperstimulation and oocyte pick-up, carriers of the MTHFR 677T mutation were found to have lower serum estradiol concentrations at ovulation and fewer oocytes could be retrieved from them. It appears that these negative effects can be compensated for in full by increasing the daily dose of folic acid to at least 0.8 mg. In carriers of the MTHFR 677TT genotype who receive appropriate supplementation, AMH concentrations were found to be significantly increased, which could indicate a compensatory mechanism. AMH concentrations in homozygous carriers of the MTHFR 677TT genotype could even be overestimated, as almost 20 % fewer oocytes are retrieved from these patients per AMH unit compared to MTHFR 677CC wild-type individuals.
Zusammenfassung
Der Folatmetabolismus hat vielfältige Effekte auf ovarielle Funktion, Implantation, Embryogenese und den gesamten Verlauf der Schwangerschaft. Neben dem gut etablierten Einfluss auf die Inzidenz neuraler Fusionsdefekte finden sich Zusammenhänge zwischen verminderten Folsäure- und erhöhten Homocysteinkonzentrationen einerseits und gehäuften Spontanaborten und anderen Schwangerschaftskomplikationen andererseits. Zusätzlich zeigt sich bei Kinderwunschpatientinnen im Rahmen der IVF/ICSI-Behandlung ein deutlicher Zusammenhang zwischen Plasma-Folat-Konzentrationen und der Inzidenz dichorialer Geminischwangerschaften. Im Rahmen der ovariellen Hyperstimulation finden sich bei Trägerinnen der MTHFR-677T-Mutation unter einer Folsäure-Substitution mit täglich 0,4 mg negative Effekte auf die Zahl gewonnener Oozyten sowie die maximale Konzentration von Östradiol am Tag der Ovulationsauslösung. Diese Effekte sind offenbar vollständig kompensierbar durch Erhöhung der täglichen Folsäuredosis auf mind. 0,8 mg. Bei entsprechend substituierten Trägerinnen des MTHFR-677TT-Genotyps finden sich die AMH-Konzentrationen signifikant erhöht, was auf einen Kompensationsmechanismus hindeuten könnte. Tatsächlich könnten die AMH-Konzentrationen homozygoter Trägerinnen des MTHFR-677TT-Genotyps allerdings überschätzt werden, denn bei ihnen konnten durchschnittlich fast 20 % weniger Oozyten pro AMH-Einheit gewonnen werden als bei Individuen mit dem MTHFR-677CC-Wildtyp-Genotyp.
Key words
assisted reproduction - folate metabolism - homocysteine - human reproduction - folliculogenesisSchlüsselwörter
assistierte Reproduktion - Folatmetabolismus - Homocystein - menschliche Fortpflanzung - Follikulogenese-
References
- 1 Ströhle A, Wolters M, Willers J et al. Mikronährstoffe in den verschiedenen Lebensphasen der Frau (Teil 3) – Schwangerschaft: Nahrung für einen optimalen Start ins Leben. Gyne 2014; 5: 33-39
- 2 Brönstrup A. Folat und Folsäure. Ernähr Umschau 2007; 9: 538-544
- 3 Ohrvik VE, Witthoft CM. Human folate bioavailability. Nutrients 2011; 3: 475-490
- 4 Sauberlich HE, Kretsch MJ, Skala JH et al. Folate requirement and metabolism in nonpregnant women. Am J Clin Nutr 1987; 46: 1016-1028
- 5 Deutsche Gesellschaft für Ernährung e. V.. Referenzwerte für die Nährstoffzufuhr: Folat. Online: http://www.dge.de/pdf/ws/Referenzwerte-2013-Folat.pdf last access: 23.07.2014
- 6 Frosst P, Blom HJ, Milos R et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111-113
- 7 Kang SS, Zhou J, Wong PW et al. Intermediate homocysteinemia: a thermolabile variant of methylenetetrahydrofolate reductase. Am J Hum Genet 1988; 43: 414-421
- 8 McAndrew PE, Brandt JT, Pearl DK et al. The incidence of the gene for thermolabile methylene tetrahydrofolate reductase in African Americans. Thromb Res 1996; 83: 195-198
- 9 Verhoeff BJ, Trip MD, Prins MH et al. The effect of a common methylenetetrahydrofolate reductase mutation on levels of homocysteine, folate, vitamin B12 and on the risk of premature atherosclerosis. Atherosclerosis 1998; 141: 161-166
- 10 Harmon DL, Woodside JV, Yarnell JW et al. The common ‘thermolabile variant of methylene tetrahydrofolate reductase is a major determinant of mild hyperhomocysteinaemia. QJM 1996; 89: 571-577
- 11 Jacques PF, Bostom AG, Williams RR et al. Relation between folate status, a common mutation in methylenetetrahydrofolate reductase, and plasma homocysteine concentrations. Circulation 1996; 93: 7-9
- 12 Ströhle A, Wolters M, Hahn A. Nährstoffsupplemente – Möglichkeiten und Grenzen. Teil 2: Ausgewählte Risikogruppen – Supplemente in der Schwangerschaft. Med Monatsschr Pharm 2013; 36: 252-266
- 13 Nelen WL, Blom HJ, Thomas CM et al. Methylenetetrahydrofolate reductase polymorphism affects the change in homocysteine and folate concentrations resulting from low dose folic acid supplementation in women with unexplained recurrent miscarriages. J Nutr 1998; 128: 1336-1341
- 14 Hibbard ED, Smithells RW. Folic acid metabolism and human embryopathy. Lancet 1965; 1: 1254
- 15 Laurence KM, James N, Miller MH et al. Double-blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. Br Med J (Clin Res Ed) 1981; 282: 1509-1511
- 16 Czeizel AE, Dudás I. Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 1992; 327: 1832-1835
- 17 Czeizel AE. Controlled studies of multivitamin supplementation on pregnancy outcomes. Ann N Y Acad Sci 1993; 678: 266-275
- 18 Smithells RW, Sheppard S, Schorah CJ et al. Apparent prevention of neural tube defects by periconceptional vitamin supplementation. Arch Dis Child 1981; 56: 911-918
- 19 Smithells RW, Sheppard S, Schorah CJ et al. Possible prevention of neural-tube defects by periconceptional vitamin supplementation. Lancet 1980; 1: 339-340
- 20 Smithells RW, Sheppard S, Wild J et al. Prevention of neural tube defect recurrences in Yorkshire: final report. Lancet 1989; 2: 498-499
- 21 Smithells RW. Multivitamins for the prevention of neural tube defects. How convincing is the evidence?. Drugs 1989; 38: 849-854
- 22 Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet 1991; 338: 131-137
- 23 Goh YI, Bollano E, Einarson TR et al. Prenatal multivitamin supplementation and rates of congenital anomalies: a meta-analysis. J Obstet Gynaecol Can 2006; 28: 680-689
- 24 Blencowe H, Cousens S, Modell B et al. Folic acid to reduce neonatal mortality from neural tube disorders. Int J Epidemiol 2010; 39 (Suppl. 01) i110-i121
- 25 Choumenkovitch SF, Selhub J, Wilson PW et al. Folic acid intake from fortification in United States exceeds predictions. J Nutr 2002; 132: 2792-2798
- 26 Quinlivan EP, Gregory 3rd JF. Effect of food fortification on folic acid intake in the United States. Am J Clin Nutr 2003; 77: 221-225
- 27 Dietrich M, Brown CJ, Block G. The effect of folate fortification of cereal-grain products on blood folate status, dietary folate intake, and dietary folate sources among adult non-supplement users in the United States. J Am Coll Nutr 2005; 24: 266-274
- 28 Williams LJ, Mai CT, Edmonds LD et al. Prevalence of spina bifida and anencephaly during the transition to mandatory folic acid fortification in the United States. Teratology 2002; 66: 33-39
- 29 Chavarro JE, Rich-Edwards JW, Rosner BA et al. Use of multivitamins, intake of B vitamins, and risk of ovulatory infertility. Fertil Steril 2008; 89: 668-676
- 30 Haggarty P, McCallum H, McBain H et al. Effect of B vitamins and genetics on success of in-vitro fertilisation: prospective cohort study. Lancet 2006; 367: 1513-1519
- 31 Boxmeer JC, Macklon NS, Lindemans J et al. IVF outcomes are associated with biomarkers of the homocysteine pathway in monofollicular fluid. Hum Reprod 2009; 24: 1059-1066
- 32 Hasbargen U, Lohse P, Thaler CJ. The number of dichorionic twin pregnancies is reduced by the common MTHFR 677C–>T mutation. Hum Reprod 2000; 15: 2659-2662
- 33 Thaler CJ, Budiman H, Ruebsamen H et al. Effects of the common 677C>T mutation of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene on ovarian responsiveness to recombinant follicle-stimulating hormone. Am J Reprod Immunol 2006; 55: 251-258
- 34 Hecht S, Pavlik R, Lohse P et al. Common 677C–>T mutation of the 5,10-methylenetetrahydrofolate reductase gene affects follicular estradiol synthesis. Fertil Steril 2009; 91: 56-61
- 35 Quéré I, Mercier E, Bellet H et al. Vitamin supplementation and pregnancy outcome in women with recurrent early pregnancy loss and hyperhomocysteinemia. Fertil Steril 2001; 75: 823-825
- 36 Rosen MP, Shen S, McCulloch CE et al. Methylenetetrahydrofolate reductase (MTHFR) is associated with ovarian follicular activity. Fertil Steril 2007; 88: 632-638
- 37 Pavlik R, Hecht S, Ochsenkühn R et al. Divergent effects of the 677C>T mutation of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene on ovarian responsiveness and anti-Müllerian hormone concentrations. Fertil Steril 2011; 95: 2257-2262