Horm Metab Res 2014; 46(09): 635-643
DOI: 10.1055/s-0034-1383574
Endocrine Research
© Georg Thieme Verlag KG Stuttgart · New York

Quantitative Trait Loci Influencing Abdominal Fat Deposition and Functional Variability of the HPA Axis in the Rat

N. Marissal-Arvy
1   INRA, Laboratory of Nutrition and Integrative Neurobiology, Bordeaux Cedex, France
2   Univ. Bordeaux, Laboratory of Nutrition and Integrative Neurobiology, Bordeaux Cedex, France
,
J.-M. Heliès
1   INRA, Laboratory of Nutrition and Integrative Neurobiology, Bordeaux Cedex, France
2   Univ. Bordeaux, Laboratory of Nutrition and Integrative Neurobiology, Bordeaux Cedex, France
,
C. Tridon
1   INRA, Laboratory of Nutrition and Integrative Neurobiology, Bordeaux Cedex, France
2   Univ. Bordeaux, Laboratory of Nutrition and Integrative Neurobiology, Bordeaux Cedex, France
,
M.-P. Moisan
1   INRA, Laboratory of Nutrition and Integrative Neurobiology, Bordeaux Cedex, France
2   Univ. Bordeaux, Laboratory of Nutrition and Integrative Neurobiology, Bordeaux Cedex, France
,
P. Mormède
1   INRA, Laboratory of Nutrition and Integrative Neurobiology, Bordeaux Cedex, France
2   Univ. Bordeaux, Laboratory of Nutrition and Integrative Neurobiology, Bordeaux Cedex, France
3   Present address: INRA, Laboratoire de Génétique Cellulaire, Castanet-Tolosan Cedex, France
› Author Affiliations
Further Information

Publication History

received 17 October 2013

accepted 04 June 2014

Publication Date:
08 July 2014 (online)

Abstract

With the aim to reveal common genomic regions influencing phenotypes related to HPA axis function and metabolism, we did a quantitative trait loci (QTL) study in a F2 population obtained from the cross-breeding between 2 contrasted rat strains, LOU/C and Fischer 344. QTL determining phenotypes related first to corticotropic function were searched: plasma corticosterone (Cort) in control and stress conditions, after a dexamethasone suppression treatment (glucocorticoid receptor related-effect), and mineralocorticoid receptor-mediated urinary response to aldosterone. Then, phenotypes related to metabolism were studied on the same animals: body composition, basal and post-insulin plasma glucose, plasma free fatty acids, leptin, and insulin. Finally, we analyzed the overlapping regions between these QTL and looked for candidate genes within these regions. The gene NR3C1 encoding the glucocorticoid receptor was confirmed to be central in the link between hypothalamic-pituitary-adrenal (HPA) axis function and fat deposition, and its metabolic consequences. Among the other candidate genes detected, most contain a glucocorticoid responsive element, strengthening our hypothesis of common genetic determinism between HPA axis and metabolism.

 
  • References

  • 1 Chrousos GP, Kino T. Glucocorticoid signaling in the cell. Expanding clinical implications to complex human behavioral and somatic disorders. Ann N Y Acad Sci 2009; 1179: 153-166
  • 2 Mormede P, Foury A, Barat P, Corcuff JB, Terenina E, Marissal-Arvy N, Moisan MP. Molecular genetics of hypothalamic-pituitary-adrenal axis activity and function. Ann N Y Acad Sci 2011; 1220: 127-136
  • 3 Devenport L, Knehans A, Sundstrom A, Thomas T. Corticosterone’s dual metabolic actions. Life Sciences 1989; 45: 1389-1396
  • 4 Marissal-Arvy N, Langlois A, Tridon C, Mormede P. Functional variability in corticosteroid receptors is a major component of strain differences in fat deposition and metabolic consequences of enriched diets in rat. Metabolism 2011; 60: 706-719
  • 5 Chanson P, Salenave S. Metabolic syndrome in Cushing’s syndrome. Neuroendocrinology 2010; 92 (Suppl. 01) 96-101
  • 6 Marissal-Arvy N, Gaumont A, Langlois A, Dabertrand F, Bouchecareilh M, Tridon C, Mormede P. Strain differences in hypothalamic pituitary adrenocortical axis function and adipogenic effects of corticosterone in rats. J Endocrinol 2007; 195: 473-484
  • 7 Campen TJ, Vaughn DA, Fanestil DD. Mineralo- and glucocorticoid effects on renal excretion of electrolytes. Pflugers Arch 1983; 399: 93-101
  • 8 Burton G, Galigniana M, De Lavallaz S, Brachet-Cota AL, Sproviero EM, Ghini AA, Lantos CP, Damasco MC. Sodium-retaining activity of some natural and synthetic 21-deoxysteroids. Mol Pharmacol 1995; 47: 535-543
  • 9 Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB, Knepper MA. The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci USA 1998; 95: 14552-14557
  • 10 Uete T, Venning EH. Interplay between various adrenal cortical steroids with respect to electrolyte excretion. Endocrinology 1962; 71: 768-778
  • 11 Marissal-Arvy N, Mormede P. Excretion of electrolytes in Brown Norway and Fischer 344 rats: effects of adrenalectomy and of mineralocorticoid and glucocorticoid receptor ligands. Exp Physiol 2004; 89: 753-765
  • 12 Karteszi M, Dallman MF, Makara GB, Stark E. Regulation of the adrenocortical response to insulin-induced hypoglycemia. Endocrinology 1982; 111: 535-541
  • 13 Osako Y, Koike K, Kiyama H, Sakamoto Y, Masuhara K, Segawa T, Inoue M, Murata Y. Insulin-induced hypoglycemia activates a chemokinergic neuronal pathway in the hypothalamo-pituitary system. Neuropeptides 1999; 33: 271-275
  • 14 Richard EM, Helbling JC, Tridon C, Desmedt A, Minni AM, Cador M, Pourtau L, Konsman JP, Mormede P, Moisan MP. Plasma transcortin influences endocrine and behavioral stress responses in mice. Endocrinology 2010; 151: 649-659
  • 15 Yu H, Pandit B, Klett E, Lee MH, Lu K, Helou K, Ikeda I, Egashira N, Sato M, Klein R, Batta A, Salen G, Patel SB. The rat STSL locus: characterization, chromosomal assignment, and genetic variations in sitosterolemic hypertensive rats. BMC Cardiovasc Disord 2003; 3: 4
  • 16 Yagil C, Sapojnikov M, Wechsler A, Korol A, Yagil Y. Genetic dissection of proteinuria in the Sabra rat. Physiol Genomics 2006; 25: 121-133
  • 17 Vadasz C, Saito M, Gyetvai BM, Oros M, Szakall I, Kovacs KM, Prasad VV, Morahan G, Toth R. Mapping of QTLs for oral alcohol self-administration in B6.C and B6.I quasi-congenic RQI strains. Neurochem Res 2007; 32: 1099-1112
  • 18 Helies JM, Diane A, Langlois A, Larue-Achagiotis C, Fromentin G, Tome D, Mormede P, Marissal-Arvy N. Comparison of fat storage between Fischer 344 and obesity-resistant Lou/C rats fed different diets. Obes Res 2005; 13: 3-10
  • 19 Potenza MN, Brodkin ES, Joe B, Luo X, Remmers EF, Wilder RL, Nestler EJ, Gelernter J. Genomic regions controlling corticosterone levels in rats. Biol Psychiatry 2004; 55: 634-641
  • 20 Klimes I, Weston K, Gasperikova D, Kovacs P, Kvetnansky R, Jezova D, Dixon R, Thompson JR, Sebokova E, Samani NJ. Mapping of genetic determinants of the sympathoneural response to stress. Physiol Genomics 2005; 20: 183-187
  • 21 Bilusic M, Bataillard A, Tschannen MR, Gao L, Barreto NE, Vincent M, Wang T, Jacob HJ, Sassard J, Kwitek AE. Mapping the genetic determinants of hypertension, metabolic diseases, and related phenotypes in the lyon hypertensive rat. Hypertension 2004; 44: 695-701
  • 22 Ogino T, Wei S, Wei K, Moralejo DH, Kose H, Mizuno A, Shima K, Sasaki Y, Yamada T, Matsumoto K. Genetic evidence for obesity loci involved in the regulation of body fat distribution in obese type 2 diabetes rat, OLETF. Genomics 2000; 70: 19-25
  • 23 Watanabe T, Iizuka Y, Liang YQ, Inomata H, Gotoda T, Yanai K, Isobe M, Kato N. Evaluation of insulin resistance linkage to rat chromosome 4 in SHR of a Japanese colony. Biochem Biophys Res Commun 2005; 329: 879-887
  • 24 Ogino T, Moralejo DH, Kose H, Yamada T, Matsumoto K. Serum leptin concentration is linked to chromosomes 2 and 6 in the OLETF rat, an animal model of type 2 diabetes with mild obesity. Mamm Genome 2003; 14: 839-844
  • 25 Malin R, Laaksonen R, Knuuti J, Janatuinen T, Vesalainen R, Nuutila P, Lehtimaki T. Paraoxonase genotype modifies the effect of pravastatin on high-density lipoprotein cholesterol. Pharmacogenetics 2001; 11: 625-633
  • 26 Wallis RH, Wallace KJ, Collins SC, McAteer M, Argoud K, Bihoreau MT, Kaisaki PJ, Gauguier D. Enhanced insulin secretion and cholesterol metabolism in congenic strains of the spontaneously diabetic (Type 2) Goto Kakizaki rat are controlled by independent genetic loci in rat chromosome 8. Diabetologia 2004; 47: 1096-1106
  • 27 Klimes I, Weston K, Kovacs P, Gasperikova D, Jezova D, Kvetnansky R, Thompson JR, Sebokova E, Samani NJ. Mapping of genetic loci predisposing to hypertriglyceridaemia in the hereditary hypertriglyceridaemic rat: analysis of genetic association with related traits of the insulin resistance syndrome. Diabetologia 2003; 46: 352-358
  • 28 Ahmadiyeh N, Churchill GA, Solberg LC, Baum AE, Shimomura K, Takahashi JS, Redei EE. Lineage is an epigenetic modifier of QTL influencing behavioral coping with stress. Behav Genet 2005; 35: 189-198
  • 29 Shimomura Y, Obayashi M, Murakami T, Harris RA. Regulation of branched-chain amino acid catabolism: nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase. Curr Opin Clin Nutr Metab Care 2001; 4: 419-423
  • 30 Kwitek AE, Gullings-Handley J, Yu J, Carlos DC, Orlebeke K, Nie J, Eckert J, Lemke A, Andrae JW, Bromberg S, Pasko D, Chen D, Scheetz TE, Casavant TL, Soares MB, Sheffield VC, Tonellato PJ, Jacob HJ. High-density rat radiation hybrid maps containing over 24,000 SSLPs, genes, and ESTs provide a direct link to the rat genome sequence. Genome Res 2004; 14: 750-757
  • 31 Bonne AC, den Bieman MG, Gillissen GF, Lankhorst A, Kenyon CJ, van Zutphen BF, van Lith HA. Quantitative trait loci influencing blood and liver cholesterol concentration in rats. Arterioscler Thromb Vasc Biol 2002; 22: 2072-2079
  • 32 Kato N, Tamada T, Nabika T, Ueno K, Gotoda T, Matsumoto C, Mashimo T, Sawamura M, Ikeda K, Nara Y, Yamori Y. Identification of quantitative trait loci for serum cholesterol levels in stroke-prone spontaneously hypertensive rats. Arterioscler Thromb Vasc Biol 2000; 20: 223-229
  • 33 Bong JJ, Cho KK, Baik M. Comparison of gene expression profiling between bovine subcutaneous and intramuscular adipose tissues by serial analysis of gene expression. Cell Biol Int 2010; 34: 125-133
  • 34 Taylor BA, Tarantino LM, Phillips SJ. Gender-influenced obesity QTLs identified in a cross involving the KK type II diabetes-prone mouse strain. Mamm Genome 1999; 10: 963-968
  • 35 Voorhoeve PG, van den Akker EL, van Rossum EF, Koper JW, van Mechelen W, Lamberts SW, Delemarre-van de Waal HA. Glucocorticoid receptor gene variant is associated with increased body fatness in youngsters. Clin Endocrinol (Oxf) 2009; 71: 518-523
  • 36 Rosmond R. The glucocorticoid receptor gene and its association to metabolic syndrome. Obes Res 2002; 10: 1078-1086
  • 37 Tahrani AA, Bailey CJ, Del Prato S, Barnett AH. Management of type 2 diabetes: new and future developments in treatment. Lancet 2011; 378: 182-197
  • 38 Kotaja N, Vihinen M, Palvimo JJ, Janne OA. Androgen receptor-interacting protein 3 and other PIAS proteins cooperate with glucocorticoid receptor-interacting protein 1 in steroid receptor-dependent signaling. J Biol Chem 2002; 277: 17781-17788