Subscribe to RSS
DOI: 10.1055/s-0034-1384999
Ultrasound Contrast Agents For Ultrasound Molecular Imaging
Ultraschall-Kontrastmittel für molekulare Bildgebungim UltraschallPublication History
27 May 2014
13 July 2014
Publication Date:
12 November 2014 (online)
Abstract
Ultrasound is a real-time imaging technique which is widely used in many clinical applications for its capacity to provide anatomic information with high spatial and temporal resolution. The advent of ultrasound contrast agents in combination with contrast-specific imaging modes has given access to perfusion assessments at an organ level, leading to an improved diagnostic accuracy. More recently, the development of biologically-targeted ultrasound contrast agents has expanded the role of ultrasound even further into molecular imaging applications. Ultrasound molecular imaging can be used to visualize the expression of intravascular markers, and to assess their local presence over time and/or during therapeutic treatment. Major applications are in the field of inflammation and neoangiogenesis due to the strictly intravascular presence of microbubbles. Various technologies have been investigated for attaching the targeting moiety to the shell from simple biotin-avidin constructs to more elaborated insertion within the shell through attachment to PEG residues. This important improvement has allowed a clinical translation of initial pre-clinical investigations, opening the way for an early detection and an accurate characterization of lesions in patients. The combination of anatomic, functional and molecular information/data provided by contrast ultrasound is a powerful tool which is still in its infancy due to the lack of agents suitable for clinical use. The advantages of ultrasound techniques combined with the molecular signature of lesions will represent a significant advance in imaging in the field of personalized medicine.
Zusammenfassung
Die Sonografie ist eine weitverbreitete Bildgebungsmethode mit hoher örtlicher und zeitlicher Auflösung. Die Einführung von Ultraschallkontrastmitteln im Zusammenhang mit kontrastmittelspezifischer Software erlaubt die Analyse organspezifischer Durchblutungsmuster und Perfusion mit Verbesserung der diagnostischen Genauigkeit. Die weitere Entwicklung von mit biologischen Markern versehenen Ultraschallkontrastmitteln erlaubt eine molekulare Bildgebung. Die molekulare Bildgebung ermöglicht die Darstellbarkeit der Expression von intravaskulären Markern vor, während und nach medikamentöser Behandlung. Der Vorteil der Ultraschallkontrastmittel liegt in ihrer strikten intravaskulären Verteilung, sodass Neoangiogenese und Entzündungsvorgänge dargestellt werden können. Verschiedene Technologien wurden evaluiert, um das zielgerichtete Molekül an die Kontrastmittelhülle zu binden. Diese reichen von einfachen Biotin-Avidin-Konstrukten bis zu komplizierteren Anheftungen mittels PEG-Abkömmlingen. Aktuelle Fortschritte auf diesem Gebiet erlauben die Übertragung präklinischer Erfahrung für eine verbesserte Detektion und Charakterisierung von Neoplasien und Entzündungsprozessen. Die kombinierte Anwendung und Auswertung anatomischer, funktionsanalytischer und molekularer Informationen im Rahmen der Kontrastmittelsonografie ist vielversprechend steht aber noch in den Anfängen, da bisher nur wenige klinisch relevante Markermoleküle existieren. Die beschriebenen Vorteile der Sonografie kombiniert mit der molekularen Signatur von Neoplasien wird im Rahmen der personalisierten Medizin eine relevante Rolle spielen.
-
References
- 1 Gramiak R, Shah PM, Kramer DH. Ultrasound cardiography: contrast studies in anatomy and function. Radiology 1969; 939-948
- 2 Claudon M, Dietrich CF, Choi BI et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver – update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS. Ultraschall in Med 2013; 34: 11-29
- 3 Piscaglia F, Nolsoe C, Dietrich CF et al. The EFSUMB guidelines and recommendations on the clinical practice of contrast enhanced ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall in Med 2012; 33: 33-59
- 4 Deshpande N, Needles A, Willmann JK. Molecular ultrasound imaging: current status and future directions. Clin Radiol 2010; 65: 567-581
- 5 Hwang M, Lyshchik A, Fleischer AC. Molecular sonography with targeted microbubbles: current investigations and potential applications. Ultrasound Q 2010; 26: 75-82
- 6 Inaba Y, Lindner JR. Molecular imaging of disease with targeted contrast ultrasound imaging. Transl Res 2012; 159: 140-148
- 7 Kiessling F, Huppert J, Palmowski M. Functional and molecular ultrasound imaging: concepts and contrast agents. Curr Med Chem 2009; 16: 627-642
- 8 Willmann JK, van Bruggen N, Dinkelborg LM et al. Molecular imaging in drug development. Nat Rev Drug Disc 2008; 7: 591-607
- 9 Correas JM, Claudon M, Tranquart F et al. The kidney: imaging with microbubble contrast agents. Ultrasound Q 2006; 22: 53-66
- 10 Claudon M, Cosgrove D, Albrecht T et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) – Update 2008. Ultraschall in Med 2008; 29: 28-44
- 11 Hyvelin JM, Tardy I, Arbogast C et al. Use of ultrasound contrast agent microbubbles in preclinical research: recommendations for small animal imaging. Invest Radiol 2013; 8: 570-583
- 12 Klibanov AL, Rasche PT, Hughes MS et al. Detection of individual microbubbles of an ultrasound contrast agent: fundamental and pulse inversion imaging. Acad Radiol 2002; 9 (Suppl. 02) S279-S281
- 13 Dayton PA, Rychak JJ. Molecular ultrasound imaging using microbubble contrast agents. Frontiers Biosci 2007; 12: 5124-5142
- 14 Kiessling F, Fokong S, Koczera P et al. Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med 2012; 53: 345-348
- 15 Kiessling F, Bzyl J, Fokong S et al. Targeted ultrasound imaging of cancer: an emerging technology on its way to clinics. Curr Pharm Des 2012; 18: 2184-2199
- 16 Kircher MF, Willmann JK. Molecular body imaging: MR imaging, CT, and US. part I. principles. Radiology 2012; 263: 633-643
- 17 Klibanov AL. Targeted delivery of gas-filled microspheres, contrast agents for ultrasound imaging. Adv Drug Deliv Rev 1999; 37: 139-157
- 18 Pysz MA, Willmann JK. Targeted contrast-enhanced ultrasound: an emerging technology in abdominal and pelvic imaging. Gastroenterology 2011; 140: 785-790
- 19 Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol 2010; 65: 500-516
- 20 Deshpande N, Pysz MA, Willmann JK. Molecular ultrasound assessment of tumor angiogenesis. Angiogenesis 2010; 13: 175-188
- 21 Takalkar AM, Klibanov AL, Rychak JJ et al. Binding and detachment dynamics of microbubbles targeted to P-selectin under controlled shear flow. J Control Release 2004; 96: 473-482
- 22 Pysz MA, Guracar I, Foygel K et al. Quantitative assessment of tumor angiogenesis using real-time motion-compensated contrast-enhanced ultrasound imaging. Angiogenesis 2012; 15: 433-442
- 23 Willmann JK, Paulmurugan R, Chen K et al. US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 2008; 246: 508-518
- 24 Moestue SA, Gribbestad IS, Hansen R. Intravascular targets for molecular contrast-enhanced ultrasound imaging. Int J Mol Sci 2012; 13: 6679-6697
- 25 Davidson BP, Kaufmann BA, Belcik JT et al. Detection of antecedent myocardial ischemia with multiselectin molecular imaging. J Am Coll Cardiol 2012; 60: 1690-1697
- 26 Lindner JR, Song J, Christiansen J et al. Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 2001; 104: 2107-2112
- 27 Bettinger T, Bussat P, Tardy I et al. Ultrasound molecular imaging contrast agent binding to both E- and P-selectin in different species. Invest Radiol 2012; 47: 516-523
- 28 Hyvelin JM, Tardy I, Bettinger T et al. Ultrasound molecular imaging of transient acute myocardial ischemia with a clinically translatable p- and e-selectin targeted contrast agent: correlation with the expression of selectins. Invest Radiol 2014; 49: 224-235
- 29 Villanueva FS, Lu E, Bowry S et al. Myocardial ischemic memory imaging with molecular echocardiography. Circulation 2007; 115: 345-352
- 30 Weller GE, Villanueva FS, Tom EM et al. Targeted ultrasound contrast agents: in vitro assessment of endothelial dysfunction and multi-targeting to ICAM-1 and sialyl Lewisx. Biotechnol Bioeng 2005; 92: 780-788
- 31 Kaufmann BA, Sanders JM, Davis C et al. Molecular imaging of inflammation in atherosclerosis with targeted ultrasound detection of vascular cell adhesion molecule-1. Circulation 2007; 116: 276-284
- 32 Leong-Poi H, Christiansen J, Heppner P et al. Assessment of endogenous and therapeutic arteriogenesis by contrast ultrasound molecular imaging of integrin expression. Circulation 2005; 111: 3248-3254
- 33 Wang H, Machtaler S, Bettinger T et al. Molecular imaging of inflammation in inflammatory bowel disease with a clinically translatable dual-selectin-targeted US contrast agent: comparison with FDG PET/CT in a mouse model. Radiology 2013; 267: 818-829
- 34 Kaufmann BA, Lewis C, Xie A et al. Detection of recent myocardial ischaemia by molecular imaging of P-selectin with targeted contrast echocardiography. Eur Heart J 2007; 28: 2011-2017
- 35 Foygel K, Wang H, Machtaler S et al. Detection of pancreatic ductal adenocarcinoma in mice by ultrasound imaging of thymocyte differentiation antigen 1. Gastroenterology 2013; 145: 885-894
- 36 Willmann JK, Kimura RH, Deshpande N et al. Targeted Contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nucl Med 2010; 51: 433-440
- 37 Pochon S, Tardy I, Bussat P et al. BR55: a lipopeptide-based VEGFR2-targeted ultrasound contrast agent for molecular imaging of angiogenesis. Invest Radiol 2010; 45: 89-95
- 38 Tardy I, Pochon S, Theraulaz M et al. Ultrasound molecular imaging of VEGFR2 in a rat prostate tumor model using BR55. Invest Radiol 2010; 45: 573-578
- 39 Ellegala DB, Leong-Poi H, Carpenter JE et al. Imaging tumor angiogenesis with contrast ultrasound and microbubbles targeted to alpha(v)beta3. Circulation 2003; 108: 336-341
- 40 Kiessling F, Gaetjens J, Palmowski M. Application of molecular ultrasound for imaging integrin expression. Theranostics 2011; 1127-1134
- 41 Weller GE, Wong MK, Modzelewski RA et al. Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. Cancer Res 2005; 65: 533-539
- 42 Leong-Poi H, Christiansen J, Klibanov AL et al. Noninvasive assessment of angiogenesis by ultrasound and microbubbles targeted to alpha(v)-integrins. Circulation 2003; 107: 455-460
- 43 Alonso A, Della MA, Stroick M et al. Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound. Stroke 2007; 38: 1508-1514
- 44 Della MA, Allemann E, Bettinger T et al. Grafting of abciximab to a microbubble-based ultrasound contrast agent for targeting to platelets expressing GP IIb/IIIa – characterization and in vitro testing. Eur J Pharm Biopharm 2008; 68: 555-564
- 45 Warram JM, Sorace AG, Saini R et al. A triple-targeted ultrasound contrast agent provides improved localization to tumor vasculature. J Ultrasound Med 2011; 30: 921-931
- 46 Villanueva FS, Jankowski RJ, Klibanov S et al. Microbubbles targeted to intercellular adhesion molecule-1 bind to activated coronary artery endothelial cells. Circulation 1998; 98: 1-5
- 47 Klibanov AL. Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging. Bioconjug Chem 2005; 16: 9-17
- 48 Unnikrishnan S, Klibanov AL. Microbubbles as ultrasound contrast agents for molecular imaging: preparation and application. Am J Roentgenol Am J Roentgenol 2012; 199: 292-299
- 49 Chen CC, Sirsi SR, Homma S et al. Effect of surface architecture on in vivo ultrasound contrast persistence of targeted size-selected microbubbles. Ultrasound Med Biol 2012; 38: 492-503
- 50 Anderson CR, Rychak JJ, Backer M et al. scVEGF microbubble ultrasound contrast agents: a novel probe for ultrasound molecular imaging of tumor angiogenesis. Invest Radiol 2010; 45: 579-585
- 51 Pillai R, Marinelli ER, Fan H et al. A phospholipid-PEG2000 conjugate of a vascular endothelial growth factor receptor 2 (VEGFR2)-targeting heterodimer peptide for contrast-enhanced ultrasound imaging of angiogenesis. Bioconjug Chem 2010; 21: 556-562
- 52 Rafter P, Phillips P, Vannan MA. Imaging technologies and techniques. Cardiol Clin 2004; 22: 181-197
- 53 Dietrich CF, Averkiou MA, Correas JM et al. An EFSUMB introduction into dynamic contrast-enhanced ultrasound (DCE-US) for quantification of tumour perfusion. Ultraschall in Med 2012; 33: 344-351
- 54 Deshpande N, Lutz AM, Ren Y et al. Quantification and monitoring of inflammation in murine inflammatory bowel disease with targeted contrast-enhanced US. Radiology 2012; 262: 172-180
- 55 Couture O, Fink M, Tanter M. Ultrasound contrast plane wave imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2012; 59: 2676-2683
- 56 Lyshchik A, Fleischer AC, Huamani J et al. Molecular imaging of vascular endothelial growth factor receptor 2 expression using targeted contrast-enhanced high-frequency ultrasonography. J Ultrasound Med 2007; 26: 1575-1586
- 57 Bachawal SV, Jensen KC, Lutz AM et al. Earlier detection of breast cancer with ultrasound molecular imaging in a transgenic mouse model. Cancer Res 2013; 73: 1689-1698
- 58 Bzyl J, Lederle W, Rix A et al. Molecular and functional ultrasound imaging in differently aggressive breast cancer xenografts using two novel ultrasound contrast agents (BR55 and BR38). Eur Radiol 2011; 21: 1988-1995
- 59 Bzyl J, Palmowski M, Rix A et al. The high angiogenic activity in very early breast cancer enables reliable imaging with VEGFR2-targeted microbubbles (BR55). Eur Radiol 2013; 23: 468-475
- 60 Korpanty G, Carbon JG, Grayburn PA et al. Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 2007; 13: 323-330
- 61 Palmowski M, Huppert J, Ladewig G et al. Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Therap 2008; 7: 101-109
- 62 Chadderdon SM, Belcik JT, Bader L et al. Proinflammatory endothelial activation detected by molecular imaging in obese nonhuman primates coincides with onset of insulin resistance and progressively increases with duration of insulin resistance. Circulation 2014; 129: 471-478
- 63 Tranquart F, Mercier L, Frinking P et al. Perfusion quantification in contrast-enhanced ultrasound (CEUS) – ready for research projects and routine clinical use. Ultraschall in Med 2012; 33 (Suppl. 01) S31-S38