PSYCH up2date 2014; 8(06): 343-346
DOI: 10.1055/s-0034-1387400
Wissen für die Praxis
© Georg Thieme Verlag KG Stuttgart · New York

Was sind Omics?

Weitere Informationen

Publikationsverlauf

Publikationsdatum:
06. November 2014 (online)

Einleitung

Etymologisch leitet sich der Begriff Omics von dem Sanskrit-Wort OM ab, das „Vollkommenheit und Fülle“ bedeutet und somit einen ganzheitlichen, systemorientierten Ansatz bezeichnet, der gut geeignet scheint, um die Lücke zwischen der Notwendigkeit einer streng rationalen psychiatrischen Vorgehensweise und der Erfordernis eines personalisierten medizinischen Ansatzes zu schließen [1]. Die Nachsilbe -omik (engl.: -omics) wird häufig verwendet, um etwas Großes zu beschreiben, und bezieht sich auf ein Forschungsfeld in den Life Sciences. Dieses stützt sich auf umfangreiche Daten/Informationen zur Erforschung von Leben, die in verschiedenen auf -omik auslautenden Teilbereichen zusammengefasst werden, wie z. B. Proteomik, Genomik, Epigenomik, Transkriptomik, Metabolomik usw. [1].

Ergänzendes Material

 
  • Literatur

  • 1 Yadav SP. The wholeness in suffix -omics, -omes, and the word om. JBT 2007; 18: 277
  • 2 Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001; 69: 89-95
  • 3 Kaddurah-Daouk R, Weinshilboum RM. Pharmacometabolomics Research Network. Pharmacometabolomics: implications for clinical pharmacology and systems pharmacology. Clin Pharmacol Ther 2014; 95: 154-167
  • 4 Crettol S, de Leon J, Hiemke C et al. Pharmacogenomics in psychiatry: from therapeutic drug monitoring to genomic medicine. Clin Pharmacol Ther 2014; 95: 254-257
  • 5 Doherty JL, Owen MJ. Genomic insights into the overlap between psychiatric disorders: implications for research and clinical practice. Genome medicine 2014; 6: 29
  • 6 Kendler KS. What psychiatric genetics has taught us about the nature of psychiatric illness and what is left to learn. Molecular psychiatry 2013; 18: 1058-1066
  • 7 Lehner T, Senthil G, Addington AM. Convergence of Advances in Genomics, Team Science, and Repositories as Drivers of Progress in Psychiatric Genomics. Biol Psychiatry 2014; DOI: 10.1016/j.biopsych.2014.01.003.
  • 8 Smoller JW. Disorders and borders: psychiatric genetics and nosology. Am J Med Genet B Neuropsychiatr Genet 2013; 162B: 559-578
  • 9 Psychiatric Genomics Consortium Im Internet: http://www.med.unc.edu/pgc/ (Stand: 15.10.2014)
  • 10 Cross-Disorder Group of the Psychiatric Genomics Consortium. Lee SH, Ripke S, Neale BM et al. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet 2013; 45: 984-994
  • 11 Davis LK, Yu D, Keenan CL et al. Partitioning the heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture. PLoS Genet 2013; 9: e1003864
  • 12 McCarroll SA, Hyman SE. Progress in the genetics of polygenic brain disorders: significant new challenges for neurobiology. Neuron 2013; 80: 578-587
  • 13 Lv J, Xin Y, Zhou W et al. The epigenetic switches for neural development and psychiatric disorders. Journal of genetics and genomics = Yi chuan xue bao 2013; 40: 339-346
  • 14 Lasky-Su J. A network medicine approach to psychiatric genetics. Am J Med Genet B Neuropsychiatr Genet 2013; 162B: 579-586
  • 15 Bennett DA, Yu L, Yang J et al. Epigenomics of Alzheimer's disease. Transl Res 2014; DOI: 10.1016/j.trsl.2014.05.006.
  • 16 Szyf M. Epigenetics, a key for unlocking complex CNS disorders? Therapeutic implications. Eur Neuropsychopharmacol 2014; DOI: 10.1016/j.euroneuro.2014.01.009.
  • 17 Voineagu I, Wang X, Johnston P et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011; 474: 380-384
  • 18 Uddin RK, Singh SM. Hippocampal gene expression meta-analysis identifies aging and age-associated spatial learning impairment (ASLI) genes and pathways. PloS one 2013; 8: e69768
  • 19 Mirza Z, Kamal MA, Buzenadah AM et al. Establishing genomic/transcriptomic links between Alzheimer’s disease and type 2 diabetes mellitus by meta-analysis approach. CNS Neurol Disord Drug Targets 2014; 13: 501-516
  • 20 Grünblatt E. The benefits of microarrays as tools for studying neuropsychiatric disorders. Drugs Today 2004; 40: 147-156
  • 21 Grünblatt E, Bartl J, Zehetmayer S et al. Gene expression as peripheral biomarkers for sporadic Alzheimer's disease. J Alzheimers Dis 2009; 16: 627-634
  • 22 Grünblatt E, Geissler J, Jacob CP et al. Pilot study: potential transcription markers for adult attention-deficit hyperactivity disorder in whole blood. Atten Defic Hyperact Disord 2012; 4: 77-84
  • 23 Sequeira A, Turecki G. Genome wide gene expression studies in mood disorders. OMICS 2006; 10: 444-454
  • 24 Seifuddin F, Pirooznia M, Judy JT et al. Systematic review of genome-wide gene expression studies of bipolar disorder. BMC Psychiatry 2013; 13: 213
  • 25 Kumarasinghe N, Tooney PA, Schall U. Finding the needle in the haystack: a review of microarray gene expression research into schizophrenia. Aust N Z J Psychiatry 2012; 46: 598-610
  • 26 Schwarz R, Reif A, Scholz CJ et al. A preliminary study on methylphenidate-regulated gene expression in lymphoblastoid cells of ADHD patients. World J Biol Psychiatry 2014; 1-10
  • 27 Schwanhausser B, Busse D, Li N et al. Global quantification of mammalian gene expression control. Nature 2011; 473: 337-342
  • 28 Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 2012; 13: 227-232
  • 29 Kim W, Bennett EJ, Huttlin EL et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011; 44: 325-340
  • 30 Mabb AM, Ehlers MD. Ubiquitination in postsynaptic function and plasticity. Annu Rev Cell Dev Biol 2010; 26: 179-210
  • 31 Craft GE, Chen A, Nairn AC. Recent advances in quantitative neuroproteomics. Methods 2013; 61: 186-218
  • 32 Demartini DR, Schilling LP, da Costa JC et al. Alzheimer’s and Parkinson’s diseases: an environmental proteomic point of view. J Proteomics 2014; 104: 24-36
  • 33 Nicholson JK, Lindon JC. Systems biology: Metabonomics. Nature 2008; 455: 1054-1056
  • 34 Zhang A, Sun H, Wang X. Serum metabolomics as a novel diagnostic approach for disease: a systematic review. Anal Bioanal Chem 2012; 404: 1239-1245
  • 35 Zhang AH, Sun H, Wang XJ. Recent advances in metabolomics in neurological disease, and future perspectives. Anal Bioanal Chem 2013; 405: 8143-8150
  • 36 Trifonova O, Lokhov P, Archakov A. Postgenomics diagnostics: metabolomics approaches to human blood profiling. OMICS 2013; 17: 550-559
  • 37 Kaddurah-Daouk R, Krishnan KR. Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology 2009; 34: 173-186
  • 38 Gershon ES, Alliey-Rodriguez N. New ethical issues for genetic counseling in common mental disorders. Am J Psychiatry 2013; 170: 968-976
  • 39 Korf BR, Rehm HL. New approaches to molecular diagnosis. JAMA 2013; 309: 1511-1521
  • 40 Mathieu G, Groisman IJ, Godard B. Next generation sequencing in psychiatric research: what study participants need to know about research findings. Int J Neuropsychopharmacol 2013; 16: 2119-2127
  • 41 Green RC, Berg JS, Grody WW et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 2013; 15: 565-574
  • 42 Crawford G, Foulds N, Fenwick A et al. Genetic medicine and incidental findings: it is more complicated than deciding whether to disclose or not. Genet Med 2013; 15: 896-899
  • 43 GPPC releases updated list of DTC genetic testing companies. Im Internet: http://www.dnapolicy.org/news.release.php?action=detail&pressrelease_id=145 (Stand: 15.10.2014)