Subscribe to RSS
DOI: 10.1055/s-0034-1387923
Circulating Nucleic Acids and Hemostasis: Biological Basis behind Their Relationship and Technical Issues in Assessment
Publication History
Publication Date:
31 August 2014 (online)
Abstract
Nucleic acids (NAs) constitute the backbone of cellular life permitting conservation, transmission, and execution of genetic information. In the past few years, new unexpected functions for NAs, projecting them also beyond nuclear and cellular boundaries have been recognized: circulating cell-free nucleic acids (cfNAs), histones, DNA–histone complexes, microRNAs (miRs) may have a regulatory role in physiological and pathological processes. In particular, several lines of evidence suggest that they can constitute unconventional mediators of thrombus formation, intervening both in hemostasis and thrombosis. Furthermore, in the past decade, the possibility to detect and quantify these in plasma and/or in serum has led to their ancillary use as potential markers in various medical conditions. The use of these as markers within the fields of thrombosis and hemostasis looks promising: the potential implications include the possibility to assess patients' risk profiles for thrombotic events and the identification of more directed targets for pharmacologic intervention. The major impediment is that, to date, the methods by which NAs are explored, still largely differ between published studies and standardized procedures are still lacking. Future research should focus on the physiological mechanisms underlying the activities of such mediators in specific thrombotic conditions and on the definition of reliable methods for their quantification in biological fluids.
-
References
- 1 Geddings JE, Mackman N. New players in haemostasis and thrombosis. Thromb Haemost 2014; 111 (4) 570-574
- 2 Wisler JW, Becker RC. Emerging paradigms in arterial thrombosis. J Thromb Thrombolysis 2014; 37 (1) 4-11
- 3 Fischer S, Cabrera-Fuentes HA, Noll T, Preissner KT. Impact of extracellular RNA on endothelial barrier function. Cell Tissue Res 2014; 355 (3) 635-645
- 4 Jahr S, Hentze H, Englisch S , et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61 (4) 1659-1665
- 5 Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett 2007; 581 (5) 795-799
- 6 Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer—a survey. Biochim Biophys Acta 2007; 1775 (1) 181-232
- 7 Lo YM. Circulating nucleic acids in plasma and serum: an overview. Ann N Y Acad Sci 2001; 945: 1-7
- 8 Rainer TH, Lam NY. Circulating nucleic acids and critical illness. Ann N Y Acad Sci 2006; 1075: 271-277
- 9 Borissoff JI, Joosen IA, Versteylen MO , et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arterioscler Thromb Vasc Biol 2013; 33 (8) 2032-2040
- 10 Swystun LL, Mukherjee S, Liaw PC. Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. J Thromb Haemost 2011; 9 (11) 2313-2321
- 11 Preissner KT. Extracellular RNA. A new player in blood coagulation and vascular permeability. Hamostaseologie 2007; 27 (5) 373-377
- 12 Fischer S, Preissner KT. Extracellular nucleic acids as novel alarm signals in the vascular system. Mediators of defence and disease. Hamostaseologie 2013; 33 (1) 37-42
- 13 Kannemeier C, Shibamiya A, Nakazawa F , et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 2007; 104 (15) 6388-6393
- 14 Nakazawa F, Kannemeier C, Shibamiya A , et al. Extracellular RNA is a natural cofactor for the (auto-)activation of Factor VII-activating protease (FSAP). Biochem J 2005; 385 (Pt 3) 831-838
- 15 Altincicek B, Shibamiya A, Trusheim H , et al. A positively charged cluster in the epidermal growth factor-like domain of Factor VII-activating protease (FSAP) is essential for polyanion binding. Biochem J 2006; 394 (Pt 3) 687-692
- 16 Gansler J, Jaax M, Leiting S , et al. Structural requirements for the procoagulant activity of nucleic acids. PLoS ONE 2012; 7 (11) e50399
- 17 Komissarov AA, Florova G, Idell S. Effects of extracellular DNA on plasminogen activation and fibrinolysis. J Biol Chem 2011; 286 (49) 41949-41962
- 18 Danese E, Montagnana M, Minicozzi AM , et al. Real-time polymerase chain reaction quantification of free DNA in serum of patients with polyps and colorectal cancers. Clin Chem Lab Med 2010; 48 (11) 1665-1668
- 19 Danese E, Minicozzi AM, Benati M , et al. Epigenetic alteration: new insights moving from tissue to plasma - the example of PCDH10 promoter methylation in colorectal cancer. Br J Cancer 2013; 109 (3) 807-813
- 20 Breitbach S, Tug S, Helmig S , et al. Direct quantification of cell-free, circulating DNA from unpurified plasma. PLoS ONE 2014; 9 (3) e87838
- 21 Umetani N, Kim J, Hiramatsu S , et al. Increased integrity of free circulating DNA in sera of patients with colorectal or periampullary cancer: direct quantitative PCR for ALU repeats. Clin Chem 2006; 52 (6) 1062-1069
- 22 Brinkmann V, Reichard U, Goosmann C , et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303 (5663) 1532-1535
- 23 von Köckritz-Blickwede M, Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med (Berl) 2009; 87 (8) 775-783
- 24 Yousefi S, Simon D, Simon HU. Eosinophil extracellular DNA traps: molecular mechanisms and potential roles in disease. Curr Opin Immunol 2012; 24 (6) 736-739
- 25 Chuammitri P, Ostojić J, Andreasen CB, Redmond SB, Lamont SJ, Palić D. Chicken heterophil extracellular traps (HETs): novel defense mechanism of chicken heterophils. Vet Immunol Immunopathol 2009; 129 (1-2) 126-131
- 26 Chow OA, von Köckritz-Blickwede M, Bright AT , et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 2010; 8 (5) 445-454
- 27 Fuchs TA, Abed U, Goosmann C , et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176 (2) 231-241
- 28 Buchanan JT, Simpson AJ, Aziz RK , et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr Biol 2006; 16 (4) 396-400
- 29 Gupta AK, Hasler P, Holzgreve W, Gebhardt S, Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum Immunol 2005; 66 (11) 1146-1154
- 30 Kessenbrock K, Krumbholz M, Schönermarck U , et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med 2009; 15 (6) 623-625
- 31 Hakkim A, Fürnrohr BG, Amann K , et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 2010; 107 (21) 9813-9818
- 32 Fuchs TA, Bhandari AA, Wagner DD. Histones induce rapid and profound thrombocytopenia in mice. Blood 2011; 118 (13) 3708-3714
- 33 Semeraro F, Ammollo CT, Morrissey JH , et al. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: involvement of platelet TLR2 and TLR4. Blood 2011; 118 (7) 1952-1961
- 34 Brill A, Fuchs TA, Savchenko AS , et al. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 2012; 10 (1) 136-144
- 35 Si-Tahar M, Pidard D, Balloy V , et al. Human neutrophil elastase proteolytically activates the platelet integrin alphaIIbbeta3 through cleavage of the carboxyl terminus of the alphaIIb subunit heavy chain. Involvement in the potentiation of platelet aggregation. J Biol Chem 1997; 272 (17) 11636-11647
- 36 Fuchs TA, Brill A, Duerschmied D , et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A 2010; 107 (36) 15880-15885
- 37 von Brühl ML, Stark K, Steinhart A , et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med 2012; 209 (4) 819-835
- 38 Martinod K, Demers M, Fuchs TA , et al. Neutrophil histone modification by peptidylarginine deiminase 4 is critical for deep vein thrombosis in mice. Proc Natl Acad Sci U S A 2013; 110 (21) 8674-8679
- 39 Fuchs TA, Kremer Hovinga JA, Schatzberg D, Wagner DD, Lämmle B. Circulating DNA and myeloperoxidase indicate disease activity in patients with thrombotic microangiopathies. Blood 2012; 120 (6) 1157-1164
- 40 de Boer OJ, Li X, Teeling P , et al. Neutrophils, neutrophil extracellular traps and interleukin-17 associate with the organisation of thrombi in acute myocardial infarction. Thromb Haemost 2013; 109 (2) 290-297
- 41 Diaz JA, Fuchs TA, Jackson TO , et al; for the Michigan Research Venous Group*. Plasma DNA is Elevated in Patients with Deep Vein Thrombosis. J Vasc Surg Venous Lymphat Disord 2013; 1 (4) 341-348
- 42 Longstaff C, Varjú I, Sótonyi P , et al. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem 2013; 288 (10) 6946-6956
- 43 Oklu R, Albadawi H, Watkins MT, Monestier M, Sillesen M, Wicky S. Detection of extracellular genomic DNA scaffold in human thrombus: implications for the use of deoxyribonuclease enzymes in thrombolysis. J Vasc Interv Radiol 2012; 23 (5) 712-718
- 44 Steppich BA, Seitz I, Busch G, Stein A, Ott I. Modulation of tissue factor and tissue factor pathway inhibitor-1 by neutrophil proteases. Thromb Haemost 2008; 100 (6) 1068-1075
- 45 Müller F, Mutch NJ, Schenk WA , et al. Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 2009; 139 (6) 1143-1156
- 46 Ammollo CT, Semeraro F, Xu J, Esmon NL, Esmon CT. Extracellular histones increase plasma thrombin generation by impairing thrombomodulin-dependent protein C activation. J Thromb Haemost 2011; 9 (9) 1795-1803
- 47 Holdenrieder S, Stieber P, Bodenmüller H , et al. Nucleosomes in serum as a marker for cell death. Clin Chem Lab Med 2001; 39 (7) 596-605
- 48 Holdenrieder S, Stieber P, Chan LY , et al. Cell-free DNA in serum and plasma: comparison of ELISA and quantitative PCR. Clin Chem 2005; 51 (8) 1544-1546
- 49 Caudrillier A, Kessenbrock K, Gilliss BM , et al. Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 2012; 122 (7) 2661-2671
- 50 Tillack K, Naegele M, Haueis C , et al. Gender differences in circulating levels of neutrophil extracellular traps in serum of multiple sclerosis patients. J Neuroimmunol 2013; 261 (1-2) 108-119
- 51 Delbosc S, Alsac JM, Journe C , et al. Porphyromonas gingivalis participates in pathogenesis of human abdominal aortic aneurysm by neutrophil activation. Proof of concept in rats. PLoS ONE 2011; 6 (4) e18679
- 52 Yoo DG, Floyd M, Winn M, Moskowitz SM, Rada B. NET formation induced by Pseudomonas aeruginosa cystic fibrosis isolates measured as release of myeloperoxidase-DNA and neutrophil elastase-DNA complexes. Immunol Lett 2014; 160 (2) 186-194
- 53 Bagga S, Bracht J, Hunter S , et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005; 122 (4) 553-563
- 54 Landry P, Plante I, Ouellet DL, Perron MP, Rousseau G, Provost P. Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 2009; 16 (9) 961-966
- 55 Osman A, Fälker K. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes. Platelets 2011; 22 (6) 433-441
- 56 Edelstein LC, Bray PF. MicroRNAs in platelet production and activation. Blood 2011; 117 (20) 5289-5296
- 57 Li H, Zhao H, Wang D, Yang R. microRNA regulation in megakaryocytopoiesis. Br J Haematol 2011; 155 (3) 298-307
- 58 Plé H, Landry P, Benham A, Coarfa C, Gunaratne PH, Provost P. The repertoire and features of human platelet microRNAs. PLoS ONE 2012; 7 (12) e50746
- 59 Dangwal S, Thum T. MicroRNAs in platelet physiology and pathology. Hamostaseologie 2013; 33 (1) 17-20
- 60 Dangwal S, Thum T. MicroRNAs in platelet biogenesis and function. Thromb Haemost 2012; 108 (4) 599-604
- 61 Camaioni C, Gustapane M, Cialdella P, Della Bona R, Biasucci LM. Microparticles and microRNAs: new players in the complex field of coagulation. Intern Emerg Med 2013; 8 (4) 291-296
- 62 Denis MM, Tolley ND, Bunting M , et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell 2005; 122 (3) 379-391
- 63 Nagalla S, Shaw C, Kong X , et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 2011; 117 (19) 5189-5197
- 64 Girardot M, Pecquet C, Boukour S , et al. miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. Blood 2010; 116 (3) 437-445
- 65 Leierseder S, Petzold T, Zhang L, Loyer X, Massberg S, Engelhardt S. MiR-223 is dispensable for platelet production and function in mice. Thromb Haemost 2013; 110 (6) 1207-1214
- 66 Laffont B, Corduan A, Plé H , et al. Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles. Blood 2013; 122 (2) 253-261
- 67 Halkein J, De Windt LJ. miR-223: sailing to terra incognita for microRNAs in platelets. Thromb Haemost 2013; 110 (6) 1112-1113
- 68 Pan Y, Liang H, Liu H , et al. Platelet-secreted microRNA-223 promotes endothelial cell apoptosis induced by advanced glycation end products via targeting the insulin-like growth factor 1 receptor. J Immunol 2014; 192 (1) 437-446
- 69 Stakos DA, Gatsiou A, Stamatelopoulos K, Tselepis AD, Stellos K. Platelet microRNAs: From platelet biology to possible disease biomarkers and therapeutic targets. Platelets 2013; 24 (8) 579-589
- 70 Gatsiou A, Boeckel JN, Randriamboavonjy V, Stellos K. MicroRNAs in platelet biogenesis and function: implications in vascular homeostasis and inflammation. Curr Vasc Pharmacol 2012; 10 (5) 524-531
- 71 Kondkar AA, Bray MS, Leal SM , et al. VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost 2010; 8 (2) 369-378
- 72 Sondermeijer BM, Bakker A, Halliani A , et al. Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340* and miRNA624*. PLoS ONE 2011; 6 (10) e25946
- 73 Blokhin IO, Lentz SR. Mechanisms of thrombosis in obesity. Curr Opin Hematol 2013; 20 (5) 437-444
- 74 Willeit P, Zampetaki A, Dudek K , et al. Circulating microRNAs as novel biomarkers for platelet activation. Circ Res 2013; 112 (4) 595-600
- 75 Teruel R, Corral J, Pérez-Andreu V, Martínez-Martínez I, Vicente V, Martínez C. Potential role of miRNAs in developmental haemostasis. PLoS ONE 2011; 6 (3) e17648
- 76 Eisenreich A. Regulation of vascular function on posttranscriptional level. Thrombosis 2013; 2013: 948765
- 77 Eisenreich A, Leppert U. The impact of microRNAs on the regulation of tissue factor biology. Trends Cardiovasc Med 2014; 24 (3) 128-132
- 78 Yu G, Li H, Wang X , et al. MicroRNA-19a targets tissue factor to inhibit colon cancer cells migration and invasion. Mol Cell Biochem 2013; 380 (1-2) 239-247
- 79 Yu JL, Rak JW. Shedding of tissue factor (TF)-containing microparticles rather than alternatively spliced TF is the main source of TF activity released from human cancer cells. J Thromb Haemost 2004; 2 (11) 2065-2067
- 80 Zhang X, Yu H, Lou JR , et al. MicroRNA-19 (miR-19) regulates tissue factor expression in breast cancer cells. J Biol Chem 2011; 286 (2) 1429-1435
- 81 Teruel R, Pérez-Sánchez C, Corral J , et al. Identification of miRNAs as potential modulators of tissue factor expression in patients with systemic lupus erythematosus and antiphospholipid syndrome. J Thromb Haemost 2011; 9 (10) 1985-1992
- 82 Muth M, Hussein K, Jacobi C, Kreipe H, Bock O. Hypoxia-induced down-regulation of microRNA-449a/b impairs control over targeted SERPINE1 (PAI-1) mRNA - a mechanism involved in SERPINE1 (PAI-1) overexpression. J Transl Med 2011; 9: 24-27
- 83 Marchand A, Proust C, Morange PE, Lompré AM, Trégouët DA. miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial cells. PLoS ONE 2012; 7 (8) e44532
- 84 Fort A, Borel C, Migliavacca E, Antonarakis SE, Fish RJ, Neerman-Arbez M. Regulation of fibrinogen production by microRNAs. Blood 2010; 116 (14) 2608-2615
- 85 Shan SW, Lee DY, Deng Z , et al. MicroRNA MiR-17 retards tissue growth and represses fibronectin expression. Nat Cell Biol 2009; 11 (8) 1031-1038
- 86 Tay JW, Romeo G, Hughes QW, Baker RI. Micro-ribonucleic Acid 494 regulation of protein S expression. J Thromb Haemost 2013; 11 (8) 1547-1555
- 87 Wang HJ, Deng J, Wang JY , et al. Serum miR-122 levels are related to coagulation disorders in sepsis patients. Clin Chem Lab Med 2014; 52 (6) 927-933
- 88 Stratz C, Nührenberg TG, Binder H , et al. Micro-array profiling exhibits remarkable intra-individual stability of human platelet micro-RNA. Thromb Haemost 2012; 107 (4) 634-641
- 89 Schöler N, Langer C, Döhner H, Buske C, Kuchenbauer F. Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp Hematol 2010; 38 (12) 1126-1130
- 90 McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem 2011; 57 (6) 833-840
- 91 Sun Y, Zhang K, Fan G, Li J. Identification of circulating microRNAs as biomarkers in cancers: what have we got?. Clin Chem Lab Med 2012; 50 (12) 2121-2126
- 92 van Rooij E. The art of microRNA research. Circ Res 2011; 108 (2) 219-234
- 93 Benes V, Castoldi M. Expression profiling of microRNA using real-time quantitative PCR, how to use it and what is available. Methods 2010; 50 (4) 244-249
- 94 Liu CG, Calin GA, Volinia S, Croce CM. MicroRNA expression profiling using microarrays. Nat Protoc 2008; 3 (4) 563-578
- 95 Chen C, Ridzon DA, Broomer AJ , et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005; 33 (20) e179