Intensivmedizin up2date 2015; 11(01): 33-44
DOI: 10.1055/s-0034-1391432
Allgemeine Prinzipien der Intensivmedizin
© Georg Thieme Verlag KG Stuttgart · New York

Prognose nach Herz-Kreislauf-Stillstand – ein Update

Rainer Kollmar
,
Christian Storm
Further Information

Publication History

Publication Date:
12 February 2015 (online)

Kernaussagen
  • Bei Patienten, die in der Initialphase nach der Wiederherstellung des Spontankreislaufs komatös sind, ist eine Prognoseabschätzung in den meisten Fällen sehr schwierig.

  • Ungeeignete Parameter zur Prognoseabschätzung sind die Umstände der Reanimation, anfänglicher GCS-Punktwert, Reaktion auf Schmerzreize, Hirnstammreflexe sowie die initiale Bildgebung mit CT oder MRT.

  • Die Bildgebung mit CT und MRT in der Frühphase dient vor allem der Diagnostik anderer oder komplizierender Erkrankungen nach Reanimation (z. B. Subarachnoidalblutung).

  • Es gibt bisher keine Biomarker zur sicheren Prognoseabschätzung. Allerdings korreliert die Höhe der NSE-Werte im Serum mit dem Ausmaß der Hirnschädigung. Obere Grenzwerte, die sicher eine schlechte Prognose anzeigen, sind jedoch nicht etabliert.

  • Posthypoxische Myoklonien treten nach einer Reanimation häufig auf. Sie sind ebenfalls kein sicherer Prognoseparameter.

  • Eine Temperaturkontrolle („targeted temperature management“, TTM) bzw. eine therapeutische Hypothermie erschwert die Verlässlichkeit der klinischen Untersuchung und der apparativen Diagnostik innerhalb der ersten 72 Stunden nach Reanimation.

  • Der Nachweis eines beidseitigen SEP-Verlusts innerhalb der Tage 2 – 3 nach Beginn einer hypoxischen Enzephalopathie spricht – unter der Bedingung ausreichender Erfahrung mit der Methode und sofern keine therapeutische Hypothermie durchgeführt wurde – für eine schlechte Prognose. Nach vorangegangener therapeutischer Hypothermie ist diese Sicherheit allein aufgrund des kompletten SEP-Ausfalls innerhalb von 3 Tagen nicht gegeben [17].

  • Ein Verlust der Hirnstammreflexe und ein beidseitiger SEP-Verlust (ohne Analgosedierung und Muskelrelaxation) sowie eine Aufhebung der Mark-Rinden-Grenze im kranialen CT 72 Stunden nach Beendigung der Temperaturkontrolle sprechen für eine infauste Prognose. Falls Zweifel bestehen, sollte man die Untersuchungen zu einem späteren Zeitpunkt wiederholen.

Die Literatur zu diesem Beitrag finden Sie unter http://dx.doi.org/10.1055/s-0034-1391432.

 
  • Literatur

  • 1 Wijdicks EFM, Hijdra A, Young GB et al. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the quality standards subcommittee of the American academy of neurology. Neurology 2006; 67: 203-210
  • 2 Longstreth WT, Inui TS, Cobb LA et al. Neurologic recovery after out-of-hospital cardiac arrest. Ann Intern Med 1983; 98: 588-592
  • 3 Nolan JP, Hazinski MF, Billi JE et al. Part 1: Executive summary: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation 2010; 81 (Suppl. 01) e1-e25
  • 4 Bisschops LL, van Alfen N, Bons S et al. Predictors of poor neurologic outcome in patients after cardiac arrest treated with hypothermia: a retrospective study. Resuscitation 2011; 82: 696-701
  • 5 Nielsen N, Wetterslev J, Cronberg T et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med 2013; 369: 2197-2206
  • 6 Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346: 549-556
  • 7 Bernard SA, Gray TW, Buist MD et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346: 557-563
  • 8 Hachimi-Idrissi S, Corne L, Ebinger G et al. Mild hypothermia induced by a helmet device: a clinical feasibility study. Resuscitation 2001; 51: 275-281
  • 9 Leithner C, Storm C, Hasper 2 D et al. Prognose der Hirnfunktion nach kardiopulmonaler Reanimation und therapeutischer Hypothermie. Akt Neurol 2012; 39: 145-154
  • 10 Atwood C, Eisenberg MS, Herlitz J et al. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 2005; 67: 75-80
  • 11 Rea TD, Eisenberg MS, Sinibaldi G et al. Incidence of EMS-treated out-of-hospital cardiac arrest in the United States. Resuscitation 2004; 63: 17-24
  • 12 Adielsson A, Hollenberg J, Karlsson T et al. Increase in survival and bystander CPR in out-of-hospital shockable arrhythmia: bystander CPR and female gender are predictors of improved outcome. Experiences from Sweden in an 18-year perspective. Heart 2011; 97: 1391-1396
  • 13 Lund-Kordahl I, Olasveengen TM, Lorem T et al. Improving outcome after out-of-hospital cardiac arrest by strengthening weak links of the local Chain of Survival; quality of advanced life support and post-resuscitation care. Resuscitation 2010; 81: 422-426
  • 14 Herlitz J, Engdahl J, Svensson L et al. Major differences in 1-month survival between hospitals in Sweden among initial survivors of out-of-hospital cardiac arrest. Resuscitation 2006; 70: 404-409
  • 15 Langhelle A, Tyvold SS, Lexow K et al. In-hospital factors associated with improved outcome after out-of-hospital cardiac arrest. A comparison between four regions in Norway. Resuscitation 2003; 56: 247-263
  • 16 Geocadin RG, Koenig MA, Stevens RD et al. Intensive care for brain injury after cardiac arrest: therapeutic hypothermia and related neuroprotective strategies. Crit Care Clin 2007; 22: 619-636
  • 17 DGN. Hypoxische Enzephalopathie (HE). Leitlinien für Diagnostik und Therapie in der Neurologie. DGN Leitlinien. 2012
  • 18 Dragancea I, Rundgren M, Englund E et al. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation 2013; 84: 337-342
  • 19 Al Thenayan E, Savard M, Sharpe M et al. Predictors of poor neurologic outcome after induced mild hypothermia following cardiac arrest. Neurology 2008; 71: 1535-1537
  • 20 Fugate JE, Wijdicks EF, Mandrekar J et al. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol 2010; 68: 907-914
  • 21 Bouwes A, Binnekade JM, Kuiper MA et al. Prognosis of comaafter therapeutic hypothermia: a prospective cohort study. Ann Neurol 2012; 71: 206-212
  • 22 Rossetti AO, Oddo M, Logroscino G et al. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol 2010; 67: 301-307
  • 23 Lulé D, Zickler C, Häcker S et al. Life can be worth living in locked-in syndrome. Prog Brain Res 2009; 177: 339-351
  • 24 Aguila A, Funderburk M, Guler A et al. Clinical predictors of survival in patients treated with therapeutic hypothermia following cardiac arrest. Resuscitation 2010; 81: 1621-1626
  • 25 Tømte O, Andersen Gø, Jacobsen D et al. Strong and weak aspects of an established post-resuscitation treatment protocol-A five-year observational study. Resuscitation 2011; 82: 1186-1193
  • 26 Schefold JC, Storm C, Krüger A et al. The Glasgow Coma Score is a predictor of good outcome in cardiac arrest patients treated with therapeutic hypothermia. Resuscitation 2009; 80: 658-661
  • 27 Edgren E, Hedstrand U, Kelsey S et al. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group. Lancet 1994; 343: 1055-1059
  • 28 Jørgensen EO, Holm S. The natural course of neurological recovery following cardiopulmonary resuscitation. Resuscitation 1998; 36: 111-122
  • 29 Levy DE, Bates D, Caronna JJ et al. Prognosis in nontraumatic coma. Ann Intern Med 1981; 94: 293-301
  • 30 Rittenberger JC et al. Association between clinical examination and outcome after cardiac arrest. Resuscitation 2010; 81: 1128-1132
  • 31 Samaniego EA, Mlynash M, Caulfield AF et al. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care 2011; 15: 113-119
  • 32 Kamps MJ, Horn J, Oddo M et al. Prognostication of neurologic outcome in cardiac arrest patients after mild therapeutic hypothermia: a meta-analysis of the current literature. Intensive Care Med 2013; 39: 1671-1682
  • 33 Legriel S, Bruneel F, Sediri H et al. Early EEG monitoring for detecting postanoxic status epilepticus during therapeutic hypothermia: a pilot study. Neurocrit Care 2009; 11: 338-344
  • 34 Rittenberger JC, Popescu A, Brenner RP et al. Frequency and timing of nonconvulsive status epilepticus in comatose post-cardiac arrest subjects treated with hypothermia. Neurocrit Care 2012; 16: 114-122
  • 35 Benbadis SR, Chen S, Melo M. What’s shaking in the ICU? The differential diagnosis of seizures in the intensive care setting. Epilepsia 2010; 51: 2338-2340
  • 36 Bouwes A, van Poppelen D, Koelman JH et al. Acute posthypoxic myoclonus after cardiopulmonary resuscitation. BMC Neurol 2012; 12: 63
  • 37 Legriel S, Bruneel F, Sediri H et al. Early EEG monitoring for detecting postanoxic status epilepticus during therapeutic hypothermia: a pilot study. Neurocrit Care 2009; 11: 338-344
  • 38 Rossetti AO, Oddo M, Liaudet L et al. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology 2009; 72: 744-749
  • 39 Young GB, Doig G, Ragazzoni A. Anoxic-ischemic encephalopathy: clinical and electrophysiological associations with outcome. Neurocrit Care 2005; 2: 159-164
  • 40 Rothstein TL, Thomas EM, Sumi SM. Predicting outcome in hypoxic–ischemic coma. A prospective clinical and electrophysiologic study. Electroencephalogr Clin Neurophysiol 1991; 79: 101-107
  • 41 Rossetti AO, Urbano LA, Delodder F et al. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care 2010; 14: R173
  • 42 Rundgren M, Westhall E, Cronberg T et al. Continuous amplitude integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med 2010; 38: 1838-1844
  • 43 Friberg H, Westhall E, Rosen I et al. Clinical review: Continuous and simplified electroencephalography to monitor brain recovery after cardiac arrest. Crit Care 2013; 17: 233
  • 44 Alvarez V, Sierra-Marcos A, Oddo M et al. Yield of intermittent versus continuous EEG in comatose survivors of cardiac arrest treated with hypothermia. Crit Care 2013; 17: R190
  • 45 Cruccu G, Aminoff MJ, Curio G et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 2008; 119: 1705-1719
  • 46 Laureau E, Marciniak B, Hebrard A et al. Comparative study of propofol and midazolam effects on somatosensory evoked potentials during surgical treatment of scoliosis. Neurosurgery 1999; 45: 69-74
  • 47 Asouhidou I, Katsaridis V, Vaidis G et al. Somatosensory evoked potentials suppression due to remifentanil during spinal operations: a prospective clinical study. Scoliosis 2010; 5: 8
  • 48 Robinson LR, Micklesen PJ, Tirschwell DL et al. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med 2003; 31: 960-967
  • 49 Leithner C, Ploner CJ, Hasper D et al. Does hypothermia influence the predictive value of bilateral absent N20 after cardiac arrest?. Neurology 2010; 74: 965-969
  • 50 Zandbergen EG, Hijdra A, de Haan RJ et al. Interobserver variation in the interpretation of SSEPs in anoxic-ischaemic coma. Clin Neurophysiol 2006; 117: 1529-1535
  • 51 Daubin C, Quentin C, Allouche S et al. Serum neuron-specific enolase as predictor of outcome in comatose cardiac-arrest survivors: a prospective cohort study. BMC Cardiovasc Disord 2011; 11: 48
  • 52 Zellner T, Gärtner R, Schopohl J et al. NSE and S-100B are not sufficiently predictive of neurologic outcome after therapeutic hypothermia for cardiac arrest. Resuscitation 2013; 84: 1382-1386
  • 53 Oksanen T, Tiainen M, Skrifvars MB et al. Predictive power of serum NSE and OHCA score regarding 6-month neurologic outcome after out-of-hospital ventricular fibrillation and therapeutic hypothermia. Resuscitation 2009; 80: 165-170
  • 54 Storm C, Nee J, Jörres A et al. Serial measurement of neuron specific enolase improves prognostication in cardiac arrest patients treated with hypothermia: a prospective study. Scand J Trauma Resusc Emerg Med 2012; 20: 6
  • 55 Ramont L, Thoannes H, Volondat A et al. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med 2005; 43: 1215-1217
  • 56 Mlynash M, Buckwalter MS, Okada A et al. Serum neuron-specific enolase levels from the same patients differ between laboratories: assessment of a prospective post-cardiac arrest cohort. Neurocrit Care 2013; 19: 161-166
  • 57 Mörtberg E, Zetterberg H, Nordmark J et al. S-100B is superior to NSE, BDNF and GFAP in predicting outcome of resuscitation from cardiac arrest with hypothermia treatment. Resuscitation 2011; 82: 26-31
  • 58 Oda Y, Tsuruta R, Fujita M et al. Prediction of the neurological outcome with intrathecal high mobility group box 1 and S100B in cardiac arrest victims: a pilot study. Resuscitation 2012; 83: 1006-1012
  • 59 Derwall M, Stoppe C, Brücken D et al. Changes in S-100 protein serum levels in survivors of out-of-hospital cardiac arrest treated with mild therapeutic hypothermia: a prospective, observational study. Crit Care 2009; 13: R58
  • 60 Nolan JP, Neumar RW, Adrie C et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. Resuscitation 2008; 79: 350-379
  • 61 Engel H, Ben HamoudaN, Portmann K et al. Serum procalcitonin as a marker of post-cardiac arrest syndrome and long-term neurological recovery, but not of early-onset infections, in comatose post-anoxic patients treated with therapeutic hypothermia. Resuscitation 2013; 84: 776-781
  • 62 Annborn M, Dankiewicz J, Erlinge D et al. Procalcitonin after cardiac arrest – an indicator of severity of illness, ischemia-reperfusion injury and outcome. Resuscitation 2013; 84: 782-787
  • 63 Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003; 111: 1805-1812
  • 64 Annborn M, Dankiewicz J, Nielsen N et al. CT-proAVP (copeptin), MR-proANP and Peroxiredoxin 4 after cardiac arrest: release profiles and correlation to outcome. Acta Anaesthesiol Scand 2014; 58: 428-436
  • 65 Gilje P, Gidlöf O, Rundgren M et al. The brain-enriched microRNA miR-124 in plasma predicts neurological outcome after cardiac arrest. Crit Care 2014; 18: R40
  • 66 Stammet P, Goretti E, Vausort M et al. Circulating microRNAs after cardiac arrest. Crit Care Med 2012; 40: 3209-3214
  • 67 Torbey MT, Geocadin R, Bhardwaj A. Brain arrest neurological outcomescale (BrANOS): predicting mortality and severe disability following cardiac arrest. Resuscitation 2004; 63: 55-63
  • 68 Torbey MT, Selim M, Knorr J et al. Quantitative analysis ofthe loss of distinction between gray and white matter in comatose patients after cardiac arrest. Stroke 2000; 31: 2163-2167
  • 69 Scheel M, Storm C, Gentsch A et al. The prognostic value of gray-white-matter ratio in cardiac arrest patients treated with hypothermia. Scand J Trauma Resusc Emerg Med 2013; 21: 23
  • 70 Kim J, Choi BS, Kim K et al. Prognostic performance of diffusion-weighted MRI combined with NSE in comatose cardiac arrest survivors treated with mild hypothermia. Neurocrit Care 2012; 17: 412-420
  • 71 Luyt CE, Galanaud D, Perlbarg V et al. Neuro Imaging for Coma Emergence and Recovery ConsortiumDiffusion tensor imaging to predict long-term outcome after cardiac arrest: a bicentric pilot study. Anesthesiology 2012; 117: 1311-1321