RSS-Feed abonnieren
DOI: 10.1055/s-0034-1391432
Prognose nach Herz-Kreislauf-Stillstand – ein Update
Publikationsverlauf
Publikationsdatum:
12. Februar 2015 (online)
-
Bei Patienten, die in der Initialphase nach der Wiederherstellung des Spontankreislaufs komatös sind, ist eine Prognoseabschätzung in den meisten Fällen sehr schwierig.
-
Ungeeignete Parameter zur Prognoseabschätzung sind die Umstände der Reanimation, anfänglicher GCS-Punktwert, Reaktion auf Schmerzreize, Hirnstammreflexe sowie die initiale Bildgebung mit CT oder MRT.
-
Die Bildgebung mit CT und MRT in der Frühphase dient vor allem der Diagnostik anderer oder komplizierender Erkrankungen nach Reanimation (z. B. Subarachnoidalblutung).
-
Es gibt bisher keine Biomarker zur sicheren Prognoseabschätzung. Allerdings korreliert die Höhe der NSE-Werte im Serum mit dem Ausmaß der Hirnschädigung. Obere Grenzwerte, die sicher eine schlechte Prognose anzeigen, sind jedoch nicht etabliert.
-
Posthypoxische Myoklonien treten nach einer Reanimation häufig auf. Sie sind ebenfalls kein sicherer Prognoseparameter.
-
Eine Temperaturkontrolle („targeted temperature management“, TTM) bzw. eine therapeutische Hypothermie erschwert die Verlässlichkeit der klinischen Untersuchung und der apparativen Diagnostik innerhalb der ersten 72 Stunden nach Reanimation.
-
Der Nachweis eines beidseitigen SEP-Verlusts innerhalb der Tage 2 – 3 nach Beginn einer hypoxischen Enzephalopathie spricht – unter der Bedingung ausreichender Erfahrung mit der Methode und sofern keine therapeutische Hypothermie durchgeführt wurde – für eine schlechte Prognose. Nach vorangegangener therapeutischer Hypothermie ist diese Sicherheit allein aufgrund des kompletten SEP-Ausfalls innerhalb von 3 Tagen nicht gegeben [17].
-
Ein Verlust der Hirnstammreflexe und ein beidseitiger SEP-Verlust (ohne Analgosedierung und Muskelrelaxation) sowie eine Aufhebung der Mark-Rinden-Grenze im kranialen CT 72 Stunden nach Beendigung der Temperaturkontrolle sprechen für eine infauste Prognose. Falls Zweifel bestehen, sollte man die Untersuchungen zu einem späteren Zeitpunkt wiederholen.
-
Literatur
- 1 Wijdicks EFM, Hijdra A, Young GB et al. Practice parameter: prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the quality standards subcommittee of the American academy of neurology. Neurology 2006; 67: 203-210
- 2 Longstreth WT, Inui TS, Cobb LA et al. Neurologic recovery after out-of-hospital cardiac arrest. Ann Intern Med 1983; 98: 588-592
- 3 Nolan JP, Hazinski MF, Billi JE et al. Part 1: Executive summary: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Resuscitation 2010; 81 (Suppl. 01) e1-e25
- 4 Bisschops LL, van Alfen N, Bons S et al. Predictors of poor neurologic outcome in patients after cardiac arrest treated with hypothermia: a retrospective study. Resuscitation 2011; 82: 696-701
- 5 Nielsen N, Wetterslev J, Cronberg T et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med 2013; 369: 2197-2206
- 6 Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346: 549-556
- 7 Bernard SA, Gray TW, Buist MD et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346: 557-563
- 8 Hachimi-Idrissi S, Corne L, Ebinger G et al. Mild hypothermia induced by a helmet device: a clinical feasibility study. Resuscitation 2001; 51: 275-281
- 9 Leithner C, Storm C, Hasper 2 D et al. Prognose der Hirnfunktion nach kardiopulmonaler Reanimation und therapeutischer Hypothermie. Akt Neurol 2012; 39: 145-154
- 10 Atwood C, Eisenberg MS, Herlitz J et al. Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 2005; 67: 75-80
- 11 Rea TD, Eisenberg MS, Sinibaldi G et al. Incidence of EMS-treated out-of-hospital cardiac arrest in the United States. Resuscitation 2004; 63: 17-24
- 12 Adielsson A, Hollenberg J, Karlsson T et al. Increase in survival and bystander CPR in out-of-hospital shockable arrhythmia: bystander CPR and female gender are predictors of improved outcome. Experiences from Sweden in an 18-year perspective. Heart 2011; 97: 1391-1396
- 13 Lund-Kordahl I, Olasveengen TM, Lorem T et al. Improving outcome after out-of-hospital cardiac arrest by strengthening weak links of the local Chain of Survival; quality of advanced life support and post-resuscitation care. Resuscitation 2010; 81: 422-426
- 14 Herlitz J, Engdahl J, Svensson L et al. Major differences in 1-month survival between hospitals in Sweden among initial survivors of out-of-hospital cardiac arrest. Resuscitation 2006; 70: 404-409
- 15 Langhelle A, Tyvold SS, Lexow K et al. In-hospital factors associated with improved outcome after out-of-hospital cardiac arrest. A comparison between four regions in Norway. Resuscitation 2003; 56: 247-263
- 16 Geocadin RG, Koenig MA, Stevens RD et al. Intensive care for brain injury after cardiac arrest: therapeutic hypothermia and related neuroprotective strategies. Crit Care Clin 2007; 22: 619-636
- 17 DGN. Hypoxische Enzephalopathie (HE). Leitlinien für Diagnostik und Therapie in der Neurologie. DGN Leitlinien. 2012
- 18 Dragancea I, Rundgren M, Englund E et al. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation 2013; 84: 337-342
- 19 Al Thenayan E, Savard M, Sharpe M et al. Predictors of poor neurologic outcome after induced mild hypothermia following cardiac arrest. Neurology 2008; 71: 1535-1537
- 20 Fugate JE, Wijdicks EF, Mandrekar J et al. Predictors of neurologic outcome in hypothermia after cardiac arrest. Ann Neurol 2010; 68: 907-914
- 21 Bouwes A, Binnekade JM, Kuiper MA et al. Prognosis of comaafter therapeutic hypothermia: a prospective cohort study. Ann Neurol 2012; 71: 206-212
- 22 Rossetti AO, Oddo M, Logroscino G et al. Prognostication after cardiac arrest and hypothermia: a prospective study. Ann Neurol 2010; 67: 301-307
- 23 Lulé D, Zickler C, Häcker S et al. Life can be worth living in locked-in syndrome. Prog Brain Res 2009; 177: 339-351
- 24 Aguila A, Funderburk M, Guler A et al. Clinical predictors of survival in patients treated with therapeutic hypothermia following cardiac arrest. Resuscitation 2010; 81: 1621-1626
- 25 Tømte O, Andersen Gø, Jacobsen D et al. Strong and weak aspects of an established post-resuscitation treatment protocol-A five-year observational study. Resuscitation 2011; 82: 1186-1193
- 26 Schefold JC, Storm C, Krüger A et al. The Glasgow Coma Score is a predictor of good outcome in cardiac arrest patients treated with therapeutic hypothermia. Resuscitation 2009; 80: 658-661
- 27 Edgren E, Hedstrand U, Kelsey S et al. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCT I Study Group. Lancet 1994; 343: 1055-1059
- 28 Jørgensen EO, Holm S. The natural course of neurological recovery following cardiopulmonary resuscitation. Resuscitation 1998; 36: 111-122
- 29 Levy DE, Bates D, Caronna JJ et al. Prognosis in nontraumatic coma. Ann Intern Med 1981; 94: 293-301
- 30 Rittenberger JC et al. Association between clinical examination and outcome after cardiac arrest. Resuscitation 2010; 81: 1128-1132
- 31 Samaniego EA, Mlynash M, Caulfield AF et al. Sedation confounds outcome prediction in cardiac arrest survivors treated with hypothermia. Neurocrit Care 2011; 15: 113-119
- 32 Kamps MJ, Horn J, Oddo M et al. Prognostication of neurologic outcome in cardiac arrest patients after mild therapeutic hypothermia: a meta-analysis of the current literature. Intensive Care Med 2013; 39: 1671-1682
- 33 Legriel S, Bruneel F, Sediri H et al. Early EEG monitoring for detecting postanoxic status epilepticus during therapeutic hypothermia: a pilot study. Neurocrit Care 2009; 11: 338-344
- 34 Rittenberger JC, Popescu A, Brenner RP et al. Frequency and timing of nonconvulsive status epilepticus in comatose post-cardiac arrest subjects treated with hypothermia. Neurocrit Care 2012; 16: 114-122
- 35 Benbadis SR, Chen S, Melo M. What’s shaking in the ICU? The differential diagnosis of seizures in the intensive care setting. Epilepsia 2010; 51: 2338-2340
- 36 Bouwes A, van Poppelen D, Koelman JH et al. Acute posthypoxic myoclonus after cardiopulmonary resuscitation. BMC Neurol 2012; 12: 63
- 37 Legriel S, Bruneel F, Sediri H et al. Early EEG monitoring for detecting postanoxic status epilepticus during therapeutic hypothermia: a pilot study. Neurocrit Care 2009; 11: 338-344
- 38 Rossetti AO, Oddo M, Liaudet L et al. Predictors of awakening from postanoxic status epilepticus after therapeutic hypothermia. Neurology 2009; 72: 744-749
- 39 Young GB, Doig G, Ragazzoni A. Anoxic-ischemic encephalopathy: clinical and electrophysiological associations with outcome. Neurocrit Care 2005; 2: 159-164
- 40 Rothstein TL, Thomas EM, Sumi SM. Predicting outcome in hypoxic–ischemic coma. A prospective clinical and electrophysiologic study. Electroencephalogr Clin Neurophysiol 1991; 79: 101-107
- 41 Rossetti AO, Urbano LA, Delodder F et al. Prognostic value of continuous EEG monitoring during therapeutic hypothermia after cardiac arrest. Crit Care 2010; 14: R173
- 42 Rundgren M, Westhall E, Cronberg T et al. Continuous amplitude integrated electroencephalogram predicts outcome in hypothermia-treated cardiac arrest patients. Crit Care Med 2010; 38: 1838-1844
- 43 Friberg H, Westhall E, Rosen I et al. Clinical review: Continuous and simplified electroencephalography to monitor brain recovery after cardiac arrest. Crit Care 2013; 17: 233
- 44 Alvarez V, Sierra-Marcos A, Oddo M et al. Yield of intermittent versus continuous EEG in comatose survivors of cardiac arrest treated with hypothermia. Crit Care 2013; 17: R190
- 45 Cruccu G, Aminoff MJ, Curio G et al. Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 2008; 119: 1705-1719
- 46 Laureau E, Marciniak B, Hebrard A et al. Comparative study of propofol and midazolam effects on somatosensory evoked potentials during surgical treatment of scoliosis. Neurosurgery 1999; 45: 69-74
- 47 Asouhidou I, Katsaridis V, Vaidis G et al. Somatosensory evoked potentials suppression due to remifentanil during spinal operations: a prospective clinical study. Scoliosis 2010; 5: 8
- 48 Robinson LR, Micklesen PJ, Tirschwell DL et al. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med 2003; 31: 960-967
- 49 Leithner C, Ploner CJ, Hasper D et al. Does hypothermia influence the predictive value of bilateral absent N20 after cardiac arrest?. Neurology 2010; 74: 965-969
- 50 Zandbergen EG, Hijdra A, de Haan RJ et al. Interobserver variation in the interpretation of SSEPs in anoxic-ischaemic coma. Clin Neurophysiol 2006; 117: 1529-1535
- 51 Daubin C, Quentin C, Allouche S et al. Serum neuron-specific enolase as predictor of outcome in comatose cardiac-arrest survivors: a prospective cohort study. BMC Cardiovasc Disord 2011; 11: 48
- 52 Zellner T, Gärtner R, Schopohl J et al. NSE and S-100B are not sufficiently predictive of neurologic outcome after therapeutic hypothermia for cardiac arrest. Resuscitation 2013; 84: 1382-1386
- 53 Oksanen T, Tiainen M, Skrifvars MB et al. Predictive power of serum NSE and OHCA score regarding 6-month neurologic outcome after out-of-hospital ventricular fibrillation and therapeutic hypothermia. Resuscitation 2009; 80: 165-170
- 54 Storm C, Nee J, Jörres A et al. Serial measurement of neuron specific enolase improves prognostication in cardiac arrest patients treated with hypothermia: a prospective study. Scand J Trauma Resusc Emerg Med 2012; 20: 6
- 55 Ramont L, Thoannes H, Volondat A et al. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin Chem Lab Med 2005; 43: 1215-1217
- 56 Mlynash M, Buckwalter MS, Okada A et al. Serum neuron-specific enolase levels from the same patients differ between laboratories: assessment of a prospective post-cardiac arrest cohort. Neurocrit Care 2013; 19: 161-166
- 57 Mörtberg E, Zetterberg H, Nordmark J et al. S-100B is superior to NSE, BDNF and GFAP in predicting outcome of resuscitation from cardiac arrest with hypothermia treatment. Resuscitation 2011; 82: 26-31
- 58 Oda Y, Tsuruta R, Fujita M et al. Prediction of the neurological outcome with intrathecal high mobility group box 1 and S100B in cardiac arrest victims: a pilot study. Resuscitation 2012; 83: 1006-1012
- 59 Derwall M, Stoppe C, Brücken D et al. Changes in S-100 protein serum levels in survivors of out-of-hospital cardiac arrest treated with mild therapeutic hypothermia: a prospective, observational study. Crit Care 2009; 13: R58
- 60 Nolan JP, Neumar RW, Adrie C et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. Resuscitation 2008; 79: 350-379
- 61 Engel H, Ben HamoudaN, Portmann K et al. Serum procalcitonin as a marker of post-cardiac arrest syndrome and long-term neurological recovery, but not of early-onset infections, in comatose post-anoxic patients treated with therapeutic hypothermia. Resuscitation 2013; 84: 776-781
- 62 Annborn M, Dankiewicz J, Erlinge D et al. Procalcitonin after cardiac arrest – an indicator of severity of illness, ischemia-reperfusion injury and outcome. Resuscitation 2013; 84: 782-787
- 63 Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest 2003; 111: 1805-1812
- 64 Annborn M, Dankiewicz J, Nielsen N et al. CT-proAVP (copeptin), MR-proANP and Peroxiredoxin 4 after cardiac arrest: release profiles and correlation to outcome. Acta Anaesthesiol Scand 2014; 58: 428-436
- 65 Gilje P, Gidlöf O, Rundgren M et al. The brain-enriched microRNA miR-124 in plasma predicts neurological outcome after cardiac arrest. Crit Care 2014; 18: R40
- 66 Stammet P, Goretti E, Vausort M et al. Circulating microRNAs after cardiac arrest. Crit Care Med 2012; 40: 3209-3214
- 67 Torbey MT, Geocadin R, Bhardwaj A. Brain arrest neurological outcomescale (BrANOS): predicting mortality and severe disability following cardiac arrest. Resuscitation 2004; 63: 55-63
- 68 Torbey MT, Selim M, Knorr J et al. Quantitative analysis ofthe loss of distinction between gray and white matter in comatose patients after cardiac arrest. Stroke 2000; 31: 2163-2167
- 69 Scheel M, Storm C, Gentsch A et al. The prognostic value of gray-white-matter ratio in cardiac arrest patients treated with hypothermia. Scand J Trauma Resusc Emerg Med 2013; 21: 23
- 70 Kim J, Choi BS, Kim K et al. Prognostic performance of diffusion-weighted MRI combined with NSE in comatose cardiac arrest survivors treated with mild hypothermia. Neurocrit Care 2012; 17: 412-420
- 71 Luyt CE, Galanaud D, Perlbarg V et al. Neuro Imaging for Coma Emergence and Recovery ConsortiumDiffusion tensor imaging to predict long-term outcome after cardiac arrest: a bicentric pilot study. Anesthesiology 2012; 117: 1311-1321