Int J Sports Med 2015; 36(04): 292-296
DOI: 10.1055/s-0034-1394394
Physiology & Biochemistry
© Georg Thieme Verlag KG Stuttgart · New York

CD34+ Circulating Progenitor Cells after Different Training Programs

O. Niño
1   Physiological Sciences II, L'Hospitalet de Llobregat, University of Barcelona, Spain
,
N. Balague
2   Institut Nacional d’ Educació Física de Catalunya, Salut i ciències aplicades, Barcelona, Spain
,
D. Aragones
2   Institut Nacional d’ Educació Física de Catalunya, Salut i ciències aplicades, Barcelona, Spain
,
J. Blasi
3   Pathology and Experimental Therapeutics, L'Hospitalet de Llobregat, University of Barcelona, Spain
,
J.M. Alamo
1   Physiological Sciences II, L'Hospitalet de Llobregat, University of Barcelona, Spain
,
L. Corral
1   Physiological Sciences II, L'Hospitalet de Llobregat, University of Barcelona, Spain
,
C. Javierre
1   Physiological Sciences II, L'Hospitalet de Llobregat, University of Barcelona, Spain
,
M. Miguel
3   Pathology and Experimental Therapeutics, L'Hospitalet de Llobregat, University of Barcelona, Spain
,
G. Viscor
4   Fisiologia (Biologia), Universitat de Barcelona, Barcelona, Spain
,
J. L. Ventura
1   Physiological Sciences II, L'Hospitalet de Llobregat, University of Barcelona, Spain
› Author Affiliations
Further Information

Publication History



accepted after revision 05 September 2014

Publication Date:
27 November 2014 (online)

Abstract

Circulating progenitor cells (CPC) are bone marrow-derived cells that are mobilized into the circulation. While exercise is a powerful mediator of hematopoiesis, CPC levels increase, and reports of their activation after different types of exercise are contradictory. Moreover, few studies have compared the possible effects of different training programs on CPC concentrations. 43 physically active healthy male subjects (age 22±2.4 years) were assigned to 4 different training groups: aerobic, resistance, mixed and control. Except for the control group, all participants trained for 6 weeks. Peripheral blood samples were collected through an antecubital vein, and CPC CD34+ was analyzed on different days: pre-training, post-training, and 3 weeks after finishing the training period. While no significant differences in CPC were observed either within or between the different training groups, there was a tendency towards higher values post-training and large intra- and intergroup dispersion. We detected an inverse linear relationship between pre-training values and % of CPC changes post-training (p<0.001). In the CPC values 3 weeks after training this inverse relationship was maintained, though to a lower extent (p<0.001). No changes in CPC CD34+ were detected after 6 weeks of different training groups, or after 3 weeks of follow-up.

 
  • References

  • 1 Adams V, Linke A, Breuckmann F, Leineweber K, Erbs S, Kränkel N, Bröcker-Preuss M, Woitek F, Erbel R, Heusch G, Hambrecht R, Schuler G, Möhlenkamp S. Circulating progenitor cells decrease immediately after marathon race in advanced-age marathon runners. Eur J Cardiovasc Prev Rehabil 2008; 15: 602-607
  • 2 Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964-966
  • 3 Baker JM, De Lisio M, Parise G. Endurance exercise training promotes medullary hematopoiesis. FASEB J 2011; 25: 4348-4357
  • 4 Bonsignore MR, Morici G, Riccioni R, Huertas A, Petrucci E, Veca M, Mariani G, Bonanno A, Chimenti L, Gioia M, Palange P, Testa U. Hemopoietic and angiogenetic progenitors in healthy athletes: different responses to endurance and maximal exercise. J Appl Physiol 2010; 109: 60-67
  • 5 Donovan PJ, Gearhart J. The end of the beginning for pluripotent stem cells. Nature 2001; 414: 92-97
  • 6 Eidenschink L, DiZerega G, Rodgers K, Bartlett M, Wells Da, Loken MR. Basal levels of CD34 positive cells in peripheral blood differ between individuals and are stable for 18 months. Cytometry B Clin Cytom 2012; 82: 18-25
  • 7 Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest 2000; 105: 1631-1639
  • 8 Gielen S, Schuler G, Adams V. Cardiovascular effects of exercise training: molecular mechanisms. Circulation 2010; 122: 1221-1238
  • 9 Gunsilius E, Gastl G, Petzer AL. Hematopoietic stem cells. Biomed Pharmacother 2001; 55: 186-194
  • 10 Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research: 2014 update . Int J Sports Med 2013; 34: 1025-1028
  • 11 Hattori K, Dias S, Heissig B, Hackett NR, Lyden D, Tateno M, Hicklin DJ, Zhu Z, Witte L, Crystal RG, Moore Ma, Rafii S. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001; 193: 1005-1014
  • 12 Hill JM, Zalos G, Halcox JPJ, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348: 593-600
  • 13 Hoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA. Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol 2007; 102: 847-852
  • 14 Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science 2002; 298: 601-604
  • 15 Keeney M, Chin-yee I, Weir K, Popma J, Nayar R, Sutherland DR. Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. Cytometry 1998; 34: 61-70
  • 16 Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF, Shizuru JA, Weissman IL. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 2003; 21: 759-806
  • 17 Kong D, Melo LG, Gnecchi M, Zhang L, Mostoslavsky G, Liew CC, Pratt RE, Dzau VJ. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation 2004; 110: 2039-2046
  • 18 Koutroumpi M, Dimopoulos S, Psarra K, Kyprianou T, Nanas S. Circulating endothelial and progenitor cells: Evidence from acute and long-term exercise effects. World J Cardiol 2012; 4: 312-326
  • 19 Laufs U, Werner N, Link A, Endres M, Wassmann S, Jürgens K, Miche E, Böhm M, Nickenig G. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation 2004; 109: 220-226
  • 20 Lenk K, Uhlemann M, Schuler G, Adams V. Role of endothelial progenitor cells in the beneficial effects of physical exercise on atherosclerosis and coronary artery disease. J Appl Physiol 2011; 111: 321-328
  • 21 Levering WH, Preijers FW, van Wieringen WN, Kraan J, van Beers WA, Sintnicolaas K, van Rhenen DJ, Gratama JW. Flow cytometric CD34+ stem cell enumeration: lessons from nine years’ external quality assessment within the Benelux countries. Cytometry B Clin Cytom 2007; 72: 178-188
  • 22 De Lisio M, Parise G. Characterization of the effects of exercise training on hematopoietic stem cell quantity and function. J Appl Physiol 2012; 113: 1576-1584
  • 23 Luk TH, Dai YL, Siu CW, Yiu KH, Chan HT, Lee SWL, Li SW, Fong B, Wong WK, Tam S, Lau CP, at Tse H. Effect of exercise training on vascular endothelial function in patients with stable coronary artery disease: a randomized controlled trial. Eur J Prev Cardiol 2012; 19: 830-839
  • 24 Lysák D, Kalina T, Martínek J, Pikalová Z, Vokurková D, Jarešová M, Marinov I, Ondrejková A, Spaček M, Stehlíková O. Interlaboratory variability of CD34+ stem cell enumeration. A pilot study to national external quality assessment within the Czech Republic. Int J Lab Hematol 2010; 32: e229-e236
  • 25 Möbius-Winkler S, Hilberg T, Menzel K, Golla E, Burman A, Schuler G, Adams V. Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol 2009; 107: 1943-1950
  • 26 Pearson JD. Normal endothelial cell function. Lupus 2000; 9: 183-188
  • 27 Petriz J. Nuevas estrategias para la determinación de progenitores hematopoyéticos mediante citometría de flujo. Med Clin (Barc) 2001; 117: 218-221
  • 28 Pollock ML, Franklin BA, Balady GJ, Chaitman BL, Fleg JL, Fletcher B, Limacher M, Pina IL, Stein RA, Williams M, Bazzarre T. Resistance exercise in individuals with and without cardiovascular disease: benefits, rationale, safety, and prescription an advisory from the committee on exercise, rehabilitation, and prevention, council on clinical cardiology, american heart association. Circulation 2000; 101: 828-833
  • 29 Rakobowchuk M, Harris E, Taylor A, Baliga V, Cubbon RM, Rossiter HB, Birch KM. Heavy and moderate interval exercise training alters low-flow-mediated constriction but does not increase circulating progenitor cells in healthy humans. Exp Physiol 2012; 97: 375-385
  • 30 Rehman J, Li J, Parvathaneni L, Karlsson G, Panchal VR, Temm CJ, Mahenthiran J, March KL. Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells. J Am Coll Cardiol 2004; 43: 2314-2318
  • 31 Ribeiro F, Alves AJ, Duarte JA, Oliveira J. Is exercise training an effective therapy targeting endothelial dysfunction and vascular wall inflammation?. Int J Cardiol 2010; 141: 214-221
  • 32 Silva JFR, da Rocha NG, Nobrega Claudio A. Review article mobilization of endothelial progenitor cells with exercise in healthy individuals: a systematic review. Arq Bras Cardiol 2012; 98: 182-191
  • 33 Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M, Suda T. A role for hematopoietic stem cells in promoting angiogenesis. Cell 2000; 102: 199-209
  • 34 Trigg ME. Hematopoietic Stem Cells. Pediatrics 2004; 113: 1051-1057
  • 35 Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 2004; 95: 343-353
  • 36 Viscor G, Javierre C, Pagès T, Ventura J-L, Ricart A, Martin-Henao G, Azqueta C, Segura R. Combined intermittent hypoxia and surface muscle electrostimulation as a method to increase peripheral blood progenitor cell concentration. J Transl Med 2009; 7: 91
  • 37 Volaklis KA, Tokmakidis SP, Halle M. Acute and chronic effects of exercise on circulating endothelial progenitor cells in healthy and diseased patients. Clin Res Cardiol 2013; 102: 249-257
  • 38 Walther C, Gaede L, Adams V, Gelbrich G, Leichtle A, Erbs S, Sonnabend M, Fikenzer K, Körner A, Kiess W, Bruegel M, Thiery J, Schuler G. Effect of increased exercise in school children on physical fitness and endothelial progenitor cells: a prospective randomized trial. Circulation 2009; 120: 2251-2259
  • 39 Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science 2000; 287: 1427-1430
  • 40 Witkowski S, Lockard MM, Jenkins NT, Obisesan TO, Spangenburg EE, Hagberg JM. Relationship between circulating progenitor cells, vascular function and oxidative stress with long-term training and short-term detraining in older men. Clin Sci (Lond) 2010; 118: 303-311
  • 41 Yang Z, Xia WH, Su C, Wu F, Zhang YY, Xu SY, Liu X, Zhang XY, Ou ZJ, Lai GH, Liao XX, Jin YF, Tao J. Regular exercise-induced increased number and activity of circulating endothelial progenitor cells attenuates age-related decline in arterial elasticity in healthy men. Int J Cardiol 2013; 165: 247-254