Int J Sports Med 2015; 36(04): 286-291
DOI: 10.1055/s-0034-1394395
Physiology & Biochemistry
© Georg Thieme Verlag KG Stuttgart · New York

Exercise Effects on Erythrocyte Deformability in Exercise-induced Arterial Hypoxemia

R. Alis
1   Research Universitary Institute Dr. Viña Giner, Molecular and Mitochondrial Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
5   Faculty of Medicine, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
,
F. Sanchis-Gomar
1   Research Universitary Institute Dr. Viña Giner, Molecular and Mitochondrial Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
2   Department of Physiology, University of Valencia, Valencia, Spain
3   Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
,
D. Ferioli
4   Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
,
A. La. Torre
4   Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
,
J. R. Blesa
1   Research Universitary Institute Dr. Viña Giner, Molecular and Mitochondrial Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
5   Faculty of Medicine, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
,
M. Romagnoli
1   Research Universitary Institute Dr. Viña Giner, Molecular and Mitochondrial Medicine, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
6   Department of Physical Education and Sports, University of Valencia, Valencia, Spain
› Institutsangaben
Weitere Informationen

Publikationsverlauf



accepted after revision 10. September 2014

Publikationsdatum:
27. November 2014 (online)

Abstract

Exercise-induced arterial hypoxemia (EIAH) is often found in endurance-trained subjects at high exercise intensity. The role of erythrocyte deformability (ED) in EIAH has been scarcely explored. We aimed to explore the role of erythrocyte properties and lactate accumulation in the response of ED in EIAH. ED was determined in 10 sedentary and in 16 trained subjects, both before and after a maximal incremental test, and after recovery, along with mean corpuscular volume (MCV) and red blood cell lactate concentrations. EIAH was found in 6 trained subjects (∆SaO2=−8.25±4.03%). Sedentary and non-EIAH trained subjects showed reduced ED after exercise, while no effect on ED was found in EIAH trained subjects. After exercise, lactate concentrations rose and MCV increased equally in all groups. ED is strongly driven by cell volume, but the different ED response to exercise in EIAH shows that other cellular mechanisms may be implicated. Interactions between membrane and cytoskeleton, which have been found to be O2-regulated, play a role in ED. The drop in SaO2 in EIAH subjects can improve ED response to exercise. This can be an adaptive mechanism that enhances muscular and pulmonary perfusion, and allows the achievement of high exercise intensity in EIAH despite lower O2 arterial transport.

Supplementary Material

 
  • References

  • 1 Aguilaniu B, Flore P, Perrault H, Page JE, Payan E, Lacour JR. Exercise-induced hypoxaemia in master athletes: effects of a polyunsaturated fatty acid diet. Eur J Appl Physiol 1995; 72: 44-50
  • 2 Aguilaniu B, Flore P, Page E, Maitre J, Lacour JR, Perrault H. Effects of indomethacin and polyunsaturated fatty acid diet on exercise-induced hypoxaemia in master athletes. Eur J Appl Physiol 1998; 77: 81-88
  • 3 Aguilo A, Castano E, Tauler P, Guix MP, Serra N, Pons A. Participation of blood cells in the changes of blood amino acid concentrations during maximal exercise. J Nutr Biochem 2000; 11: 81-86
  • 4 Baskurt OK, Meiselman HJ. Blood Rheology and Hemodynamics. Semin Thromb Hemost 2003; 29: 435-450
  • 5 Baskurt OK, Boynard M, Cokelet GC, Connes P, Cooke BM, Forconi S, Liao F, Hardeman MR, Jung F, Meiselman HJ, Nash G, Nemeth N, Neu B, Sandhagen B, Shin S, Thurston G, Wautier JL. New guidelines for hemorheological laboratory techniques. Clin Hemorheol Microcirc 2009; 42: 75-97
  • 6 Betticher DC, Reinhart WH, Geiser J. Effect of RBC shape and deformability on pulmonary O2 diffusing capacity and resistance to flow in rabbit lungs. J Appl Physiol 1995; 78: 778-783
  • 7 Brun J-F, Varlet-Marie E, Connes P, Aloulou I. Hemorheological alterations related to training and overtraining. Biorheology 2010; 47: 95-115
  • 8 Connes P, Bouix D, Py G, Caillaud C, Kippelen P, Brun J-F, Varray A, Prefaut C, Mercier J. Does exercise-induced hypoxemia modify lactate influx into erythrocytes and hemorheological parameters in athletes?. J Appl Physiol 2004; 97: 1053-1058
  • 9 Connes P, Bouix D, Py G, Prefaut C, Mercier J, Brun J-F, Caillaud C. Opposite effects of in vitro lactate on erythrocyte deformability in athletes and untrained subjects. Clin Hemorheol Microcirc 2004; 31: 311-318
  • 10 Connes P, Simmonds MJ, Brun JF, Baskurt OK. Exercise hemorheology: classical data, recent findings and unresolved issues. Clin Hemorheol Microcirc 2013; 53: 187-199
  • 11 Connes P, Bouix D, Durand F, Kippelen P, Mercier J, Prefaut C, Brun JF, Caillaud C. Is hemoglobin desaturation related to blood viscosity in athletes during exercise?. Int J Sports Med 2004; 25: 569-574
  • 12 Evans E, Mohandas N, Leung A. Static and dynamic rigidities of normal and sickle erythrocytes. Major influence of cell hemoglobin concentration. J Clin Invest 1984; 73: 477-488
  • 13 Galy O, Hue O, Boussana A, Peyreigne C, Mercier J, Préfaut C. Blood rheological responses to running and cycling: a potential effect on the arterial hypoxemia of highly trained athletes?. Int J Sports Med 2005; 26: 9-15
  • 14 Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research: 2014 update. Int J Sports Med 2013; 34: 1025-1028
  • 15 Hildebrand A, Lormes W, Emmert J, Liu Y, Lehmann M, Steinacker JM. Lactate Concentration in Plasma and Red Blood Cells During Incremental Exercise. Int J Sports Med 2000; 21: 463-468
  • 16 Manno S, Takakuwa Y, Nagao K, Mohandas N. Modulation of erythrocyte membrane mechanical function by beta-spectrin phosphorylation and dephosphorylation. J Biol Chem 1995; 270: 5659-5665
  • 17 Manno S, Takakuwa Y, Mohandas N. Modulation of erythrocyte membrane mechanical function by protein 4.1 phosphorylation. J Biol Chem 2005; 280: 7581-7587
  • 18 Mohandas N, Gallagher PG. Red cell membrane: past, present, and future. Blood 2008; 112: 3939-3948
  • 19 Nielsen HB. Arterial desaturation during exercise in man: implication for O2 uptake and work capacity. Scand J Med Sci Sports 2003; 13: 339-358
  • 20 Nihill MR, McNamara DG, Vick RL. The effects of increased blood viscosity on pulmonary vascular resistance. Am Heart J 1976; 92: 65-72
  • 21 Prefaut C, Durand F, Mucci P, Caillaud C. Exercise-induced arterial hypoxaemia in athletes: a review. Sports Med 2000; 30: 47-61
  • 22 Romagnoli M, Alis R, Martinez-Bello V, Sanchis-Gomar F, Aranda R, Gomez-Cabrera MC. Blood rheology effect of submaximal exercise on young subjects. Clin Hemorheol Microcirc 2014; 56: 111-117
  • 23 Ruef P, Pöschl JMB, Linderkamp O, Schmid-Schönbein H. The shear stress diffractometer Rheodyn SSD for determination of erythrocyte deformability II. Sensitivity to detect abnormal erythrocyte deformability. Clin Hemorheol Microcirc 1996; 16: 749-752
  • 24 Salomao M, Zhang X, Yang Y, Lee S, Hartwig JH, Chasis JA, Mohandas N, An X. Protein 4.1R-dependent multiprotein complex: new insights into the structural organization of the red blood cell membrane. PNAS 2008; 105: 8026-8031
  • 25 Schmid-Schönbein H, Ruef P, Linderkamp O. The shear stress diffractometer Rheodyn SSD for determination of erythrocyte deformability I. Principles of operation and reproducibility. Clin Hemorheol Microcirc 1996; 16: 745-748
  • 26 Smith JA, Telford RD, Kolbuch-Braddon M, Weidemann MJ. Lactate/H+uptake by red blood cells during exercise alters their physical properties. Eur J Appl Physiol 1997; 75: 54-61
  • 27 Stefanovic M, Puchulu-Campanella E, Kodippili G, Low PS. Oxygen regulates the band 3-ankyrin bridge in the human erythrocyte membrane. Biochem J 2013; 449: 143-150
  • 28 Sureda A, Tauler P, Aguilo A, Fuentespina E, Cordova A, Tur JA, Pons A. Blood cell NO synthesis in response to exercise. Nitric Oxide 2006; 15: 5-12
  • 29 Tauler P, Aguilo A, Gimeno I, Fuentespina E, Tur JA, Pons A. Influence of vitamin C diet supplementation on endogenous antioxidant defences during exhaustive exercise. Pflugers Arch 2003; 446: 658-664
  • 30 Tauler P, Aguilo A, Guix P, Jimenez F, Villa G, Tur JA, Cordova A, Pons A. Pre-exercise antioxidant enzyme activities determine the antioxidant enzyme erythrocyte response to exercise. J Sports Sci 2005; 23: 5-13
  • 31 Vent-Schmidt J, Waltz X, Pichon A, Hardy-Dessources MD, Romana M, Connes P. Indirect viscosimetric method is less accurate than ektacytometry for the measurement of red blood cell deformability. Clin Hemorheol Microcirc 2013;