Int J Sports Med 2015; 36(05): 343-350
DOI: 10.1055/s-0034-1395585
Physiology & Biochemistry
© Georg Thieme Verlag KG Stuttgart · New York

Regulation of mTOR Pathway in Exercise-induced Cardiac Hypertrophy

J. Liao
1   Department of Sport Science, Beijing Sport University, Beijing, China
,
Y. Li
2   Department of Sport, Jianghan University, Wuhan, China
,
F. Zeng
1   Department of Sport Science, Beijing Sport University, Beijing, China
,
Y. Wu
1   Department of Sport Science, Beijing Sport University, Beijing, China
› Author Affiliations
Further Information

Publication History



accepted after revision 09 September 2014

Publication Date:
21 January 2015 (online)

Abstract

This study was designed to examine whether the mTOR signaling pathway would respond to long-term different intensity exercises and to observe the impact of exercise upon possible cardiac damage. Male Sprague Dawley rats were randomly divided into control group, moderate-intensity exercise group and high-intensity exercise group, and each exercise group had 4 observation time points (1–24 h). Exercise training lasted 8 weeks with a 2-day break for each week. Serum cTnI was measured by ELSIA and myocardium histology was assessed by HE and HBFP. The expressions of Akt, mTOR, p70S6K and their phosphorylated forms were determined by western-blot. Both exercises were effective at inducing cardiac hypertrophy, wherein magnitude increased with exercise intensity. The significantly high level of serum cTnI in the high-intensity group was accompanied by obvious myocellular abnormalities and ischemia in the myocardium. Significant activation of Akt, mTOR and p70S6K were observed in the moderate exercise group but not in the high-intensity exercise group. Results indicate that long-term high-intensity exercise training would induce cardiac hypertrophy accompanied by damage to the heart, entailing a risk of pathological changes. There might be a pivotal regulatory role of the mTOR signaling pathway on cardiac hypertrophy after long-term moderate exercise, but not after high-intensity exercise.

 
  • References

  • 1 Adams JE, Bodor GS, Davila-Roman VG, Delmez JA, Apple FS, Ladenson JH, Jaffe AS. Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation 1993; 88: 101-106
  • 2 Barauna VG, Rosa KT, Irigoyen MC, de Oliveira EM. Effects of resistance training on ventricular function and hypertrophy in a rat model. Clin Med Res 2007; 5: 114-120
  • 3 Bedford TG, Tipton CM, Wilson NC, Oppliger RA, Gisolfi CV. Maximum oxygen consumption of rats and its changes with various experimental procedures. J Appl Physiol 1979; 47: 1278-1283
  • 4 Brown EJ, Schreiber SL. A signaling pathway to translational control. Cell 1996; 86: 517-520
  • 5 Caso P, D’Andrea A, Caso I, Severino S, Calabro P, Allocca F, Mininni N, Calabro R. The athlete’s heart and hypertrophic cardiomyopathy: two conditions which may be misdiagnosed and coexistent. Which parameters should be analysed to distinguish one disease from the other?. J Cardiovasc Med (Hagerstown) 2006; 7: 257-266
  • 6 Ceci M, Gallo P, Santonastasi M, Grimaldi S, Latronico MV, Pitisci A, Missol-Kolka E, Scimia MC, Catalucci D, Hilfiker-Kleiner D, Condorelli G. Cardiac-specific overexpression of E40K active Akt prevents pressure overload-induced heart failure in mice by increasing angiogenesis and reducing apoptosis. Cell Death Differ 2007; 14: 1060-1062
  • 7 Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, Russo MA, Gu Y, Dalton N, Chung C, Latronico MV, Napoli C, Sadoshima J, Croce CM, Ross Jr J. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci USA 2002; 99: 12333-12338
  • 8 Cooper Gt. Basic determinants of myocardial hypertrophy: a review of molecular mechanisms. Annu Rev Med 1997; 48: 13-23
  • 9 DeBosch B, Treskov I, Lupu TS, Weinheimer C, Kovacs A, Courtois M, Muslin AJ. Akt1 is required for physiological cardiac growth. Circulation 2006; 113: 2097-2104
  • 10 Dreyer HC, Glynn EL, Lujan HL, Fry CS, DiCarlo SE, Rasmussen BB. Chronic paraplegia-induced muscle atrophy downregulates the mTOR/S6K1 signaling pathway. J Appl Physiol 2008; 104: 27-33
  • 11 Duncan ND, Williams DA, Lynch GS. Adaptations in rat skeletal muscle following long-term resistance exercise training. Eur J Appl Physiol 1998; 77: 372-378
  • 12 Fernandes T, Soci UP, Oliveira EM. Eccentric and concentric cardiac hypertrophy induced by exercise training: microRNAs and molecular determinants. Braz J Med Biol Res 2011; 44: 836-847
  • 13 Gao XL, Chang Y, Lian HQ. The gene and protein expression of cTnI and Mb in myocardial ad serum of rat at different time course after exhausted exercise. Chin J Sports Med 2009; 28: 162-166
  • 14 Garciarena CD, Pinilla OA, Nolly MB, Laguens RP, Escudero EM, Cingolani HE, Ennis IL. Endurance training in the spontaneously hypertensive rat: conversion of pathological into physiological cardiac hypertrophy. Hypertension 2009; 53: 708-714
  • 15 Hannan RD, Jenkins A, Jenkins AK, Brandenburger Y. Cardiac hypertrophy: a matter of translation. Clin Exp Pharmacol Physiol 2003; 30: 517-527
  • 16 Harriss DJ, Atkinson G. Ethical standards in sports and exercise science research: 2014 update. Int J Sports Med 2013; 34: 1025-1028
  • 17 Hickson RC, Hammons GT, Holoszy JO. Development and regression of exercise-induced cardiac hypertrophy in rats. Am J Physiol 1979; 236: H268-H272
  • 18 Jefferies HB, Reinhard C, Kozma SC, Thomas G. Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci USA 1994; 91: 4441-4445
  • 19 Kemi OJ, Ceci M, Wisloff U, Grimaldi S, Gallo P, Smith GL, Condorelli G, Ellingsen O. Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol 2008; 214: 316-321
  • 20 Kemi OJ, Haram PM, Loennechen JP, Osnes JB, Skomedal T, Wisloff U, Ellingsen O. Moderate vs. high exercise intensity: differential effects on aerobic fitness, cardiomyocyte contractility, and endothelial function. Cardiovasc Res 2005; 67: 161-172
  • 21 Kemi OJ, Haram PM, Wisloff U, Ellingsen O. Aerobic fitness is associated with cardiomyocyte contractile capacity and endothelial function in exercise training and detraining. Circulation 2004; 109: 2897-2904
  • 22 Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, Kemp BE, Witters LA, Mimura O, Yonezawa K. A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 2003; 8: 65-79
  • 23 Koller A, Mertelseder S, Moser H. Is exercise-induced myocardial injury self-abating?. Med Sci Sports Exerc 2001; 33: 850-851
  • 24 Koller A, Summer P, Moser H. Regular exercise and subclinical myocardial injury during prolonged aerobic exercise. JAMA 1999; 282: 1816
  • 25 Kozma SC, Thomas G. Regulation of cell size in growth, development and human disease: PI3K, PKB and S6K. Bioessays 2002; 24: 65-71
  • 26 Li X, Ding SZ, Lu J. Effect of resistance training on Akt/mTOR signaling pathway of aging mice cardiac sarcopenia. Journal of TUS 2009; 24: 334-336
  • 27 Lippi G, Banfi G. Exercise-related increase of cardiac troponin release in sports: An apparent paradox finally elucidated?. Clin Chim Acta 2010; 411: 610-611
  • 28 Logeart D, Gambert A, Beyne P, Guiti C, Geyer C, Bourgoin P, Alonso C, Ennezat PV, Gourgon R, Cohen-Solal A. Brain natriuretic peptide (BNP) in coronary insufficiency: relationship with left ventricular filling and exercise tolerance. Ann Cardiol Angeiol (Paris) 1999; 48: 523-528
  • 29 Mair J, Genser N, Morandell D, Maier J, Mair P, Lechleitner P, Calzolari C, Larue C, Ambach E, Dienstl F, Pau B, Puschendorf B. Cardiac troponin I in the diagnosis of myocardial injury and infarction. Clin Chim Acta 1996; 245: 19-38
  • 30 Maron BJ. Hypertrophic cardiomyopathy and other causes of sudden cardiac death in young competitive athletes, with considerations for preparticipation screening and criteria for disqualification. Cardiol Clin 2007; 25: 399-414
  • 31 Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation 2006; 114: 1633-1644
  • 32 Matsui T, Li L, Wu JC, Cook SA, Nagoshi T, Picard MH, Liao R, Rosenzweig A. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J Biol Chem 2002; 277: 22896-22901
  • 33 Maynard SJ, Menown IB, Adgey AA. Troponin T or troponin I as cardiac markers in ischaemic heart disease. Heart 2000; 83: 371-373
  • 34 McMullen JR, Sherwood MC, Tarnavski O, Zhang L, Dorfman AL, Shioi T, Izumo S. Inhibition of mTOR signaling with rapamycin regresses established cardiac hypertrophy induced by pressure overload. Circulation 2004; 109: 3050-3055
  • 35 McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Dorfman AL, Longnus S, Pende M, Martin KA, Blenis J, Thomas G, Izumo S. Deletion of ribosomal S6 kinases does not attenuate pathological, physiological, or insulin-like growth factor 1 receptor-phosphoinositide 3-kinase-induced cardiac hypertrophy. Mol Cell Biol 2004; 24: 6231-6240
  • 36 McMullen JR, Shioi T, Zhang L, Tarnavski O, Sherwood MC, Kang PM, Izumo S. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci USA 2003; 100: 12355-12360
  • 37 Medeiros A, Oliveira EM, Gianolla R, Casarini DE, Negrao CE, Brum PC. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Braz J Med Biol Res 2004; 37: 1909-1917
  • 38 Medeiros C, Frederico MJ, da Luz G, Pauli JR, Silva AS, Pinho RA, Velloso LA, Ropelle ER, De Souza CT. Exercise training reduces insulin resistance and upregulates the mTOR/p70S6k pathway in cardiac muscle of diet-induced obesity rats. J Cell Physiol 2011; 226: 666-674
  • 39 Morgan HE, Gordon EE, Kira Y, Chua HL, Russo LA, Peterson CJ, McDermott PJ, Watson PA. Biochemical mechanisms of cardiac hypertrophy. Annu Rev Physiol 1987; 49: 533-543
  • 40 Neumayr G, Gaenzer H, Pfister R, Sturm W, Schwarzacher SP, Eibl G, Mitterbauer G, Hoertnagl H. Plasma levels of cardiac troponin I after prolonged strenuous endurance exercise. Am J Cardiol 2001; 87: 369-371 A310
  • 41 Ogura Y, Iemitsu M, Naito H, Kakigi R, Kakehashi C, Maeda S, Akema T. Single bout of running exercise changes LC3-II expression in rat cardiac muscle. Biochem Biophys Res Commun 2011; 414: 756-760
  • 42 Oscai LB, Mole PA, Holloszy JO. Effects of exercise on cardiac weight and mitochondria in male and female rats. Am J Physiol 1971; 220: 1944-1948
  • 43 Rowe WJ. Endurance exercise and injury to the heart. Sports Med 1993; 16: 73-79
  • 44 Shave R, Dawson E, Whyte G, George K, Gaze D, Collinson P. Altered cardiac function and minimal cardiac damage during prolonged exercise. Med Sci Sports Exerc 2004; 36: 1098-1103
  • 45 Shen WH, Chen Z, Shi S, Chen H, Zhu W, Penner A, Bu G, Li W, Boyle DW, Rubart M, Field LJ, Abraham R, Liechty EA, Shou W. Cardiac restricted overexpression of kinase-dead mammalian target of rapamycin (mTOR) mutant impairs the mTOR-mediated signaling and cardiac function. J Biol Chem 2008; 283: 13842-13849
  • 46 Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S. Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 2003; 107: 1664-1670
  • 47 Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 2006; 20: 3347-3365
  • 48 Spiering BA, Kraemer WJ, Anderson JM, Armstrong LE, Nindl BC, Volek JS, Maresh CM. Resistance exercise biology: manipulation of resistance exercise programme variables determines the responses of cellular and molecular signalling pathways. Sports Med 2008; 38: 527-540
  • 49 Sugden PH, Clerk A. Cellular mechanisms of cardiac hypertrophy. J Mol Med 1998; 76: 725-746
  • 50 Sun XJ, Pan SS. Effect of exercise intensity on cardiac calcitonin gene: related peptide in rats. Chin J Sports Med 2006; 25: 416-419
  • 51 Thomas DP, Marshall KI. Effects of repeated exhaustive exercise on myocardial subcellular membrane structures. Int J Sports Med 1988; 9: 257-260
  • 52 Tian ZJ. Experimental study of effects of hemodynamic alterations of left ventricle endothelial cell morphology in rats under different exercise loads. Journal of TUS 1999; 14: 46-49
  • 53 Wisloff U, Ellingsen O, Kemi OJ. High-intensity interval training to maximize cardiac benefits of exercise training?. Exerc Sport Sci Rev 2009; 37: 139-146
  • 54 Wisloff U, Helgerud J, Kemi OJ, Ellingsen O. Intensity-controlled treadmill running in rats: VO2 max and cardiac hypertrophy. Am J Physiol 2001; 280: H1301-H1310
  • 55 Wu W, Li X. Effect of long-term endurance exercise training on mTOR signaling pathway in cardiac muscle and skeletal muscle. Journal of Xi’an Physical Education University 2010; 27: 75-79
  • 56 Yang ZW. Heart micro-injury and function after short-term high-intensity exercise and the protective role of Captopril. Chin J Sports Med 2002; 21: 211-212
  • 57 Zaidi A, Sharma S. The athlete’s heart. Br J Hosp Med 2011; 72: 275-281
  • 58 Zak R, Rabinowitz M. Molecular aspects of cardiac hypertrophy. Annu Rev Physiol 1979; 41: 539-552