Klin Monbl Augenheilkd 2015; 232(2): 162-168
DOI: 10.1055/s-0034-1396232
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Stellenwert der okulären Pulsamplitude beim Glaukom

Role of Ocular Pulse Amplitude in Glaucoma
J. P. E. Stürmer
1   Augenklinik, Kantonsspital, Winterthur, Schweiz
,
C. Kniestedt
2   Augenklinik, Universitätsspital Zürich, Schweiz
3   TAZZ, Talacker Augen Zentrum Zürich, Schweiz
› Author Affiliations
Further Information

Publication History

eingereicht 31 December 2014

akzeptiert 14 January 2015

Publication Date:
20 February 2015 (online)

Zusammenfassung

Der Unterschied zwischen diastolischem und systolischem Augeninnendruck wird als okuläre Pulsamplitude (OPA) bezeichnet. Die okuläre Pulsamplitude entsteht durch den pulsatilen Blutfluss in der Choroidea und wird durch die Dynamik des kardiovaskulären Systems, die Rigidität der Gefäße sowie durch biometrische Faktoren des Auges beeinflusst. Die Abflussfazilität des Kammerwassers, die Höhe des Augendrucks selbst oder eine individuell unterschiedliche Elastizität der Bulbuswand wirken in bisher noch nicht restlos geklärtem Ausmaß auf die okuläre Pulsamplitude ein. Mit der dynamischen Konturtonometrie (Pascal®) lässt sich neben einer von Hornhautdicke und -radius weitgehend unabhängigen Druckmessung die okuläre Pulsamplitude einfach und schnell bestimmen. Die konturtonometrisch ermittelte OPA beträgt bei Augengesunden 1,2–4 mmHg. Bei OPA-Werten über 1,2 mmHg kann bei Augengesunden ein spontaner Puls der Zentralvene beobachtet werden. Während die OPA bei Patienten mit okulärer Hypertension druckabhängig i. d. R. höher ist als bei Augengesunden, ist sie bei Patienten mit klinisch manifestem Glaukom initial noch im Normbereich, bei fortschreitendem Gesichtsfeld- und Papillenschaden oder beim Glaukom mit vorrangiger Mangelperfusion am Sehnervenkopf zunehmend herabgesetzt. Ein Rückschluss von der Höhe der OPA auf die okuläre Durchblutung konnte wegen der zahlreichen Einflussfaktoren bis jetzt nicht im Einzelnen bewiesen werden. Neuere Untersuchungen mit einer Fourier-Spektralanalyse des okulären Pulses, und wenn möglich auch synchron des arteriellen Pulses, könnten in Zukunft einen vielversprechenden Ansatz zur Diskrimination zwischen Augengesunden und Glaukompatienten darstellen. Bei einer deutlich asymmetrischen OPA und gleichzeitig vorliegenden symmetrischen okulären Befunden sollte eine extraokuläre (vaskuläre) Ursache gesucht werden.

Abstract

The ocular pulse amplitude is defined as the difference between diastolic and systolic intraocular pressure. The ocular pulse is generated by the pulsatile ocular blood flow in the choroid. It is dependent on the dynamics of the cardiovascular system, the rigidity of the ocular vessels on one side and the biomechanical properties of the eye on the other side. In addition the influence of outflow facility of the aqueous humor, the level of the intraocular pressure itself and last but not least the rigidity of the sclera on the ocular pulse amplitude is until now not clear. Dynamic contour tonometry (Pascal®) does not only measure intraocular pressure almost independent of corneal thickness and curvature but also allows easy and fast measurement of ocular pulse amplitude on the slit lamp. The ocular pulse amplitude in healthy subjects is between 1.2 and 4 mmHg. If the ocular pulse amplitude is larger than 1.2 mmHg spontaneous pulsations of the central retinal vein are visible on fundoscopy. In patients with ocular hypertension the ocular pulse amplitude is larger than in normal subjects but this is mainly due to higher IOP levels. In patients with manifest open-angle glaucoma the ocular pulse amplitude stays initially within the normal range. In more advanced stages of the disease and especially in patients with ocular perfusion pressure dependent optic neuropathy the ocular pulse amplitude is gradually reduced. Due to the various factors influencing ocular pulse amplitude a direct correlation between reduced ocular pulse amplitude and reduced ocular perfusion pressure has not been established as yet. New approaches investigating the variations of the ocular pressure Fourier spectral analysis are promising, especially when simultaneous analysis of the arterial blood pressure is performed. These techniques may allow a fast and easy discrimination between healthy and glaucomatous patients in the near future. If ocular pulse amplitude exhibits a massive inter-ocular asymmetry in the presence of symmetrical ocular findings of extraocular vascular pathologies (i.e. carotid stenosis) are the most likely cause and therefore should be excluded.

 
  • Literatur

  • 1 Hitchings R. The ocular pulse. Editorial. Br J Ophthalmol 1991; 75: 65
  • 2 Kniestedt C, Kanngiesser HE. Dynamische Konturtonometrie. Ophthalmologe 2006; 103: 713-723
  • 3 Stürmer J, Kniestedt C. Befunde der okulären Pulsamplitude am Auge bei Gesunden und bei Glaukom-Patienten, und ihre praxisrelevante Bedeutung. In: Erb C. Mikrozirkulation beim Glaukom. Amsterdam: Excerpta Medica; 2009: 40-49
  • 4 Kaufmann C, Bachmann LM, Robert YC et al. Ocular pulse amplitude in healthy subjects as measured by dynamic contour tonometry. Arch Ophthalmol 2006; 124: 1104-1108
  • 5 Freund A. Normwerterhebung des Augeninnendruckes und der okulären Pulsamplitude mit dem Pascal® System und Evaluierung der abhängigen Variablen [Dissertation]. Berlin: Charité Universitätsmedizin Berlin; 2011
  • 6 Carbonaro F, Andrew T, Mackey DA et al. The heritability of corneal hysteresis and ocular pulse amplitude. Ophthalmology 2008; 115: 1545-1549
  • 7 Zinkernagel M, Ebneter A. Acetazolamide influences ocular pulse amplitude. J Ocul Pharmacol Ther 2009; 25: 141-144
  • 8 Knecht PB, Bosch MM, Michels S et al. The ocular pulse amplitude at different intraocular pressure; a prospective study. Acta Ophthalmol 2011; 89: e466-e471
  • 9 Grieshaber MC, Katamay R, Guglety K et al. Relationship between ocular pulse amplitude and systemic blood pressure measurements. Acta Ophthalmol 2009; 87: 329-334
  • 10 Pourjavan S, Boëlle PY, Detry-Morel M et al. Physiological diurnal variability and characteristics of the ocular pulse amplitude (OPA) with the dynamic contour tonometer (DCT-Pascal®). Int Ophthalmol 2007; 27: 357-360
  • 11 Read SA, Collins MJ, Iskander DR. Diurnal variation of axial length, intraocular pressure, and anterior eye biometrics. Invest Ophthalmol Vis Sci 2008; 49: 2911-2918
  • 12 Romppainen T, Kniestedt C, Bachmann LM et al. Okuläre Pulsamplitude als biometrischer Messwert in der Glaukomdiagnostik. Ophthalmologe 2007; 104: 230-235
  • 13 Hoffmann EM, Grus FH, Pfeiffer N. Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry. BMC Ophthalmol 2004; 4: 4
  • 14 Erickson DH, Goodwin D, Rollins M et al. Comparison of dynamic contour tonometry and Goldmann applanation tonometry and their relationship to corneal properties, refractive error, and ocular pulse amplitude. Optometry 2009; 80: 169-174
  • 15 Twa MD, Roberts CJ, Karol HJ et al. Evaluation of a contact-embedded sensor for intraocular pressure measurement. J Glaucoma 2010; 19: 382-390
  • 16 Karadag R, Keskin UC Koktener Aet al. Ocular pulse amplitude and retrobulbar blood flow change in dipper and non-dipper individuals. Eye (Lond) 2011; 25: 762-766
  • 17 Stalmans I, Harris A, Fieuws S et al. Color Doppler imaging and ocular pulse amplitude in glaucomatous and healthy eyes. Eur J Ophthalmol 2009; 19: 580-587
  • 18 Ito K, Tawara A, Kubota T et al. IOP measured by dynamic contour tonometry correlates with IOP measured by Goldmann applanation tonometry and non-contact tonometry in Japanese individuals. J Glaucoma 2012; 21: 35-40
  • 19 Ishii K, Mori M, Oshika T. An evaluation of the effects of eyeball structure on ocular pulse amplitude in healthy subjects. Int Ophthalmol 2012; 32: 553-557
  • 20 Erickson DH, Goodwin D, Anderson C et al. Ocular pulse amplitude and associated glaucomatous risk factors in healthy Hispanic population. Optometry 2010; 81: 408-413
  • 21 Figueiredo BP, Cronemberger S, Kanadani FN. Correlation between ocular perfusion pressure and ocular pulse amplitude in glaucoma, ocular hypertension, and normal eyes. Clin Ophthalmol 2013; 7: 1615-1621
  • 22 Abegao Pinto L, Vandewalle E, Willekens K et al. Ocular pulse amplitude and Doppler waveform analysis in glaucoma patients. Acta Ophthalmol 2014; 92: e280-e285
  • 23 Donnelly SJ, Subramanian PS. Relationship of intraocular pulse pressure and spontaneous venous pulsations. Am J Ophthalmol 2009; 147: 51-55
  • 24 Kniestedt C, Lin S, Choe J et al. Correlation between intraocular pressure, central corneal thickness, stage of glaucoma, and demographic patient data. Prosepctive analysis of biophysical parameters in tertiary glaucoma practice populations. J Glaucoma 2006; 15: 91-97
  • 25 Katsimpris JM, Theoulakis PE, Papadopoulos GE et al. [Ocular pulse amplitude measurement using Pascal dynamic contour tonometer in glaucoma patients]. Klin Monatsbl Augenheilkd 2014; 231: 363-367
  • 26 Punjabi OS, Ho HV, Kniestedt C et al. Intraocualr pressure and ocular pulse amplitude comparisons in different types of glaucoma using dynamic contour tonometry. Curr Eye Res 2006; 31: 851-862
  • 27 Halkiadakis I, Patsea E, Chatzimichali K et al. Comparison of dynamic contour tonometry with Goldmann applanation tonometry in glaucoma practice. Acta Ophthalmol 2009; 87: 323-328
  • 28 Vulsteke C, Stalmans I, Fieuws S et al. Correlation between ocular pulse amplitude measured by dynamic contour tonometer and visual field defects. Graefes Arch Clin Exp Ophthalmol 2008; 246: 559-565
  • 29 Gross S, Gugleta K, Turksever C et al. [Analysis of risk factors for long-term glaucomatous damage development]. Klin Monatsbl Augenheilkd 2014; 231: 335-339
  • 30 Stalmans I, Harris A, Vanbellinghen V et al. Ocular pulse amplitude in normal tension and primary open angle glaucoma. J Glaucoma 2008; 17: 403-407
  • 31 Weizer JS, Asrani S, Stinnett SS et al. The clinical utility of dynamic contour tonometry and ocular pulse amplitude. J Glaucoma 2007; 16: 700-703
  • 32 Kynigopoulos M, Tzamalis A, Ntampos K et al. Decreased ocular pulse amplitude associated with functional and structural damage in open-angle glaucoma. Eur J Ophthalmol 2012; 22: 111-116
  • 33 Moghimi S, Torabi H, Fakhraie G et al. Dynamic contour tonometry in primary open angle glaucoma and pseudoexfoliation glaucoma: factors associated with intraocular pressure and pulse amplitude. Middle East Afr J Ophthalmol 2013; 20: 158-162
  • 34 Kac MJ, Solari HP, Velarde GC et al. Ocular pulse amplitude in patients with asymmetric primary open-angle glaucoma. Curr Eye Res 2011; 36: 727-732
  • 35 Suzuki jr. ER, Suzuki CL, Carlier D et al. Dynamic contour tonometry in asymmetric glaucoma patients. Clin Ophthalmol 2012; 6: 555-559
  • 36 Sullivan-Mee M, Halverson KD, Qualls C. Clinical comparison of Pascal® dynamic contour tonometry and Goldmann applanation tonometry in asymmetric open-angle glaucoma. J Glaucoma 2007; 16: 694-699
  • 37 Gugleta K, Polunina A, Kochkorov A et al. Association between risk factors and glaucomatous damage in untreated primary open-angle glaucoma. J Glaucoma 2013; 22: 501-505
  • 38 Wang J, Freemann EE, Descovich D et al. Estimation of ocular rigidity in glaucoma using ocular pulse amplitude and pulsatile choroidal blood flow. Invest Ophthalmol Vis Sci 2013; 54: 1706-1711
  • 39 Von Schulthess SR, Kaufmann C, Bachmann LM et al. Ocular pulse amplitude after trabeculectomy. Grafes Arch Clin Exp Ophthalmol 2006; 244: 46-51
  • 40 Breusegem C, Fieuws S, Zeyen T et al. The effect of trabeculectomy on ocular pulse amplitude. Ophthalmol Vis Sci 2010; 51: 231-235
  • 41 Bozic M, Dukic ML, Stojkovic M. Spetral analysis of intraocular pressure pulse wave in open angle glaucomas and healthy eyes. Current Eye Research 2012; 37: 1019-1024
  • 42 Asejczyk-Widlicka M, Krzyzanowska-Berkowska P, Kowalska M et al. Clinical utility of spectral analysis of intraocular pressure pulse wave. BMC Ophthalmology 2014; 14: 30
  • 43 Robert YCA, Wild A, Kessels AG et al. Discrimination of healthy and glaucomatous eyes based on the ocular pulse amplitude: a diagnostic case-control study. Ophthalmic Res 2012; 48: 1-5
  • 44 De Moraes CG, Reis AS, Cavalcante AF et al. Choroidal expansion during the water drinking test. Graefes Arch Clin Exp Ophthalmol 2009; 247: 385-389
  • 45 Lee M, Cho E-H, Lew HM et al. Relationship between ocular pulse amplitude and glaucomatous central visual field defect in normal-tension glaucoma. J Glaucoma 2012; 21: 596-600
  • 46 Kim YJ, Lee KS, Lee JR et al. Ocular pulse amplitude as a dynamic parameter and its relationship with 24-h intraocular pressure and blood pressure in glaucoma. Exp Eye Research 2013; 115: 65-72
  • 47 Kniestedt C, Romppainen T, Gloor BP et al. Positiver Ibopamin Provokationstest bei Verdacht auf Niederdruckglaukom. Klin Monatsbl Augenheilkd 2007; 224: 255-259
  • 48 Knecht PB, Menghini M, Bachmann LM et al. The ocular pulse amplitude as a noninvasive parameter for carotid artery stenosis screening: a test accuracy study. Ophthalmology 2012; 119: 1244-1249
  • 49 Dervisogullari MS, Totan Y, Gencler OS. Choroid thickness and ocular pulse amplitude in migraine during attack. Eye (Lond) 2014; DOI: 10.1038/eye.2014.299.
  • 50 Bertelmann T, Langanke S, Potstawa M et al. Can dynamic contour tonometry and ocular pulse amplitude help to detect severe cardiovascular pathologies?. Clin Ophthalmol 2014; 8: 1317-1321