Semin Musculoskelet Radiol 2015; 19(01): 040-048
DOI: 10.1055/s-0034-1396766
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Magnetic Resonance Imaging Evaluation of the Painful Total Knee Arthroplasty

Darryl B. Sneag
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
2   Department of Radiology, Weill Medical College of Cornell University, New York, New York
,
Eric A. Bogner
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
2   Department of Radiology, Weill Medical College of Cornell University, New York, New York
,
Hollis G. Potter
1   Department of Radiology and Imaging, Hospital for Special Surgery, New York, New York
2   Department of Radiology, Weill Medical College of Cornell University, New York, New York
› Author Affiliations
Further Information

Publication History

Publication Date:
29 January 2015 (online)

Abstract

Optimization of metal artifact reduction pulse sequences over the past decade has rendered MRI valuable in knee arthroplasty assessment. MRI can reliably predict the presence and extent of infection, component loosening and polyethylene wear, and component malrotation, and it can evaluate the integrity of surrounding soft tissue structures. Using dynamic contrast-enhanced angiographic techniques, vascular pathology such as pseudoaneurysm formation and recurrent hemarthrosis can also be assessed.

 
  • References

  • 1 Healthcare Cost and Utilization Project (HCUP). Nationwide Inpatient Sample (NIS). Agency for Healthcare Research and Quality; 1999–2009. http://hcupnet.ahrq.gov/ . Accessed August 24, 2014
  • 2 Losina E, Thornhill TS, Rome BN, Wright J, Katz JN. The dramatic increase in total knee replacement utilization rates in the United States cannot be fully explained by growth in population size and the obesity epidemic. J Bone Joint Surg Am 2012; 94 (3) 201-207
  • 3 Cram P, Lu X, Kates SL, Singh JA, Li Y, Wolf BR. Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991–2010. JAMA 2012; 308 (12) 1227-1236
  • 4 Solomon LB, Stamenkov RB, MacDonald AJ , et al. Imaging periprosthetic osteolysis around total knee arthroplasties using a human cadaver model. J Arthroplasty 2012; 27 (6) 1069-1074
  • 5 Reish TG, Clarke HD, Scuderi GR, Math KR, Scott WN. Use of multi-detector computed tomography for the detection of periprosthetic osteolysis in total knee arthroplasty. J Knee Surg 2006; 19 (4) 259-264
  • 6 Subhas N, Primak AN, Obuchowski NA , et al. Iterative metal artifact reduction: Evaluation and optimization of technique. Skeletal Radiol 2014; 43 (12) 1729-1735
  • 7 Koch KM, Lorbiecki JE, Hinks RS, King KF. A multispectral three-dimensional acquisition technique for imaging near metal implants. Magn Reson Med 2009; 61 (2) 381-390
  • 8 Lu W, Pauly KB, Gold GE, Pauly JM, Hargreaves BA. SEMAC: slice encoding for metal artifact correction in MRI. Magn Reson Med 2009; 62 (1) 66-76
  • 9 Chen CA, Chen W, Goodman SB , et al. New MR imaging methods for metallic implants in the knee: artifact correction and clinical impact. J Magn Reson Imaging 2011; 33 (5) 1121-1127
  • 10 Sharkey PF, Lichstein PM, Shen C, Tokarski AT, Parvizi J. Why are total knee arthroplasties failing today—has anything changed after 10 years?. J Arthroplasty 2014; 29 (9) 1774-1778
  • 11 Mulcahy H, Chew FS. Current concepts in knee replacement: features and imaging assessment. AJR Am J Roentgenol 2013; 201 (6) W828-W842
  • 12 Fritz J, Lurie B, Miller TT, Potter HG. MR imaging of hip arthroplasty implants. Radiographics 2014; 34 (4) E106-E132
  • 13 Bosetti M, Massè A, Navone R, Cannas M. Biochemical and histological evaluation of human synovial-like membrane around failed total hip replacement prostheses during in vitro mechanical loading. J Mater Sci Mater Med 2001; 12 (8) 693-698
  • 14 Nam D, Bostrom MP, Fahlgren A. Emerging ideas: Instability-induced periprosthetic osteolysis is not dependent on the fibrous tissue interface. Clin Orthop Relat Res 2013; 471 (6) 1758-1762
  • 15 Bauer TW, Schils J. The pathology of total joint arthroplasty. II. Mechanisms of implant failure. Skeletal Radiol 1999; 28 (9) 483-497
  • 16 Howie DW, Neale SD, Martin W , et al. Progression of periacetabular osteolytic lesions. J Bone Joint Surg Am 2012; 94 (16) e1171-e1176
  • 17 Heyse TJ, Chong R, Davis J, Boettner F, Haas SB, Potter HG. MRI analysis of the component-bone interface after TKA. Knee 2012; 19 (4) 290-294
  • 18 Hayter CL, Koff MF, Shah P, Koch KM, Miller TT, Potter HG. MRI after arthroplasty: comparison of MAVRIC and conventional fast spin-echo techniques. AJR Am J Roentgenol 2011; 197 (3) W405-W411
  • 19 Lachiewicz PF, Geyer MR. The use of highly cross-linked polyethylene in total knee arthroplasty. J Am Acad Orthop Surg 2011; 19 (3) 143-151
  • 20 Mulcahy H, Chew FS. Current concepts in knee replacement: complications. AJR Am J Roentgenol 2014; 202 (1) W76-W86
  • 21 Ries MD, Pruitt L. Effect of cross-linking on the microstructure and mechanical properties of ultra-high molecular weight polyethylene. Clin Orthop Relat Res 2005; 440 (440) 149-156
  • 22 Garvin KL, Konigsberg BS. Infection following total knee arthroplasty: prevention and management. J Bone Joint Surg Am 2011; 93 (12) 1167-1175
  • 23 Love C, Tomas MB, Tronco GG, Palestro CJ. FDG PET of infection and inflammation. Radiographics 2005; 25 (5) 1357-1368
  • 24 Plodkowski AJ, Hayter CL, Miller TT, Nguyen JT, Potter HG. Lamellated hyperintense synovitis: potential MR imaging sign of an infected knee arthroplasty. Radiology 2013; 266 (1) 256-260
  • 25 Huang CH, Liau JJ, Cheng CK. Fixed or mobile-bearing total knee arthroplasty. J Orthop Surg 2007; 2: 1
  • 26 Anderson JAA, MacDessi SJ, Della Valle AG. Spontaneous, recurrent dislodgment of the polyethylene tibial insert after total knee arthroplasty. A case report. J Bone Joint Surg Am 2007; 89 (2) 404-407
  • 27 Ries MD. Dissociation of an ultra-high molecular weight polyethylene insert from the tibial baseplate after total knee arthroplasty. A case report. J Bone Joint Surg Am 2004; 86-A (7) 1522-1524
  • 28 Davis PF, Bocell Jr JR, Tullos HS. Dissociation of the tibial component in total knee replacements. Clin Orthop Relat Res 1991; (272) 199-204
  • 29 Hedlundh U, Andersson M, Enskog L, Gedin P. Traumatic late dissociation of the polyethylene articulating surface in a total knee arthroplasty—a case report. Acta Orthop Scand 2000; 71 (5) 532-533
  • 30 Poulter RJ, Ashworth MJ. A case of dissociation of polyethylene from its metal baseplate in a “one piece” compression-moulded AGC tibial component. Knee 2005; 12 (3) 243-244
  • 31 Robertsson O, Dunbar M, Pehrsson T, Knutson K, Lidgren L. Patient satisfaction after knee arthroplasty: a report on 27,372 knees operated on between 1981 and 1995 in Sweden. Acta Orthop Scand 2000; 71 (3) 262-267
  • 32 Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop Relat Res 2001; (392) 46-55
  • 33 Nicoll D, Rowley DI. Internal rotational error of the tibial component is a major cause of pain after total knee replacement. J Bone Joint Surg Br 2010; 92 (9) 1238-1244
  • 34 Cameron HU. A comedy of errors: the bad knee. J Arthroplasty 2005; 20 (4) (Suppl. 02) 18-22
  • 35 Lakstein D, Zarrabian M, Kosashvili Y, Safir O, Gross AE, Backstein D. Revision total knee arthroplasty for component malrotation is highly beneficial: a case control study. J Arthroplasty 2010; 25 (7) 1047-1052
  • 36 Griffin FM, Math K, Scuderi GR, Insall JN, Poilvache PL. Anatomy of the epicondyles of the distal femur: MRI analysis of normal knees. J Arthroplasty 2000; 15 (3) 354-359
  • 37 Murakami AM, Hash TW, Hepinstall MS, Lyman S, Nestor BJ, Potter HG. MRI evaluation of rotational alignment and synovitis in patients with pain after total knee replacement. J Bone Joint Surg Br 2012; 94 (9) 1209-1215
  • 38 Parker DA, Dunbar MJ, Rorabeck CH. Extensor mechanism failure associated with total knee arthroplasty: prevention and management. J Am Acad Orthop Surg 2003; 11 (4) 238-247
  • 39 Nam D, Abdel MP, Cross MB , et al. The management of extensor mechanism complications in total knee arthroplasty. AAOS exhibit selection. J Bone Joint Surg Am 2014; 96 (6) e47
  • 40 Chalidis BE, Tsiridis E, Tragas AA, Stavrou Z, Giannoudis PV. Management of periprosthetic patellar fractures. A systematic review of literature. Injury 2007; 38 (6) 714-724
  • 41 Heyse TJ, Chong R, Davis J, Haas SB, Figgie MP, Potter HG. MRI diagnosis of patellar clunk syndrome following total knee arthroplasty. HSS J 2012; 8 (2) 92-95
  • 42 Hozack WJ, Rothman RH, Booth Jr RE, Balderston RA. The patellar clunk syndrome. A complication of posterior stabilized total knee arthroplasty. Clin Orthop Relat Res 1989; (241) 203-208
  • 43 Beight JL, Yao B, Hozack WJ, Hearn SL, Booth Jr RE. The patellar “clunk” syndrome after posterior stabilized total knee arthroplasty. Clin Orthop Relat Res 1994; (299) 139-142
  • 44 Okamoto T, Futani H, Atsui K, Fukunishi S, Koezuka A, Maruo S. Sonographic appearance of fibrous nodules in patellar clunk syndrome: a case report. J Orthop Sci 2002; 7 (5) 590-593
  • 45 Rukavina A, Kerkhoffs GM, Schneider P, Kuster MS. Recurrent hemarthrosis after total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2010; 18 (7) 898-900
  • 46 Hash II TW, Maderazo AB, Haas SB, Saboeiro GR, Trost DW, Potter HG. Magnetic resonance angiography in the management of recurrent hemarthrosis after total knee arthroplasty. J Arthroplasty 2011; 26 (8) 1357-61.e1