Semin Hear 2015; 36(01): 11-28
DOI: 10.1055/s-0034-1396924
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Acoustic Immittance, Absorbance, and Reflectance in the Human Ear Canal

John J. Rosowski
1   The Eliason Professor of Otology and Laryngology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
,
Laura Ann Wilber
2   Department of Communication Sciences and Disorders, Frances Searle Building, Northwestern University, Evanston, Illinois
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
29. Januar 2015 (online)

Abstract

Ear canal measurements of acoustic immittance (a term that groups impedance and its inverse, admittance) and the related quantities of acoustic reflectance and power absorbance have been used to assess auditory function and aid in the differential diagnosis of conductive hearing loss for over 50 years. The change in such quantities after stimulation of the acoustic reflex also has been used in diagnosis. In this article, we define these quantities, describe how they are commonly measured, and discuss appropriate calibration procedures and standards necessary for accurate immittance/reflectance measurements.

 
  • References

  • 1 Zwislocki JJ. Some measurements of the impedance at the eardrum. J Acoust Soc Am 1957; 29: 349-356
  • 2 Zwislocki JJ, Feldman AS. Acoustic impedance of pathological ears. ASHA Monogr 1970; 15: 1-42
  • 3 Terkildsen K, Thomsen KA. The influence of pressure variations on the impedance of the human ear drum. A method for objective determination of the middle-ear pressure. J Laryngol Otol 1959; 73: 409-418
  • 4 Terkildsen K, Nielsen SS. An electroacoustic impedance measuring bridge for clinical use. Arch Otolaryngol 1960; 72: 339-346
  • 5 Keith RW. Impedance audiometry with neonates. Arch Otolaryngol 1973; 97 (6) 465-467
  • 6 Keith RW. Middle ear function in neonates. Arch Otolaryngol 1975; 101 (6) 376-379
  • 7 Keefe DH, Ling R, Bulen JC. Method to measure acoustic impedance and reflection coefficient. J Acoust Soc Am 1992; 91 (1) 470-485
  • 8 Djupesland G. Middle ear muscle reflexes elicited by acoustic and nonacoustic stimulation. Acta Otolaryngol Suppl 1964; 188 (Suppl): 188 , 287–292
  • 9 Djupesland G. Contraction of the Tympanic Muscles in Man (Thesis). Oslo, Norway: Univeritetsforlaget; 1967
  • 10 Borg E. A quantitative study of the effect of the acoustic stapedius reflex on sound transmission through the middle ear of man. Acta Otolaryngol 1968; 66 (6) 461-472
  • 11 Gelfand SA. The acoustic reflex. In: Katz J, Medwetsky L, Burkard R, Hood LJ, , eds. Handbook of Clinical Audiology. Philadelphia PA: Lippincott Williams and Wilkins; 2009: 189-221
  • 12 Shahnaz N, Feeney MP, Schairer KS. Wideband acoustic immittance normative data: ethnicity, gender, aging, and instrumentation. Ear Hear 2013; 34 (Suppl. 01) 27S-35S
  • 13 Stinson MR, Shaw EAG, Lawton BW. Estimation of acoustical energy reflectance at the eardrum from measurements of pressure distribution in the human ear canal. J Acoust Soc Am 1982; 72 (3) 766-773
  • 14 Keefe DH, Bulen JC, Arehart KH, Burns EM. Ear-canal impedance and reflection coefficient in human infants and adults. J Acoust Soc Am 1993; 94 (5) 2617-2638
  • 15 Rosowski JJ, Stenfelt S, Lilly D. An overview of wideband immittance measurements techniques and terminology: you say absorbance, I say reflectance. Ear Hear 2013; 34 (Suppl. 01) 9S-16S
  • 16 Farmer-Fedor BL, Rabbitt RD. Acoustic intensity, impedance and reflection coefficient in the human ear canal. J Acoust Soc Am 2002; 112 (2) 600-620
  • 17 Rabinowitz WM. Measurement of the acoustic input immittance of the human ear. J Acoust Soc Am 1981; 70 (4) 1025-1035
  • 18 Voss SE, Stenfelt S, Neely ST, Rosowski JJ. Factors that introduce intrasubject variability into ear-canal absorbance measurements. Ear Hear 2013; 34 (Suppl. 01) 60S-64S
  • 19 Lidén G, Peterson JL, Björkman G. Tympanometry. Arch Otolaryngol 1970; 92 (3) 248-257
  • 20 Jerger J. Handbook of Clinical Impedance audiometry. New York, NY: American Electromedics Corporation; 1975
  • 21 Feldman AS, Wilber LA. Acoustic Impedance and Admittance—The Measurement of Middle-Ear Function. Baltimore, MD: Williams & Wilkins; 1976
  • 22 Shanks JE, Lilly DJ. An evaluation of tympanometric estimates of ear canal volume. J Speech Hear Res 1981; 24 (4) 557-566
  • 23 Keefe DH, Bulen JC, Campbell SL, Burns EM. Pressure transfer function and absorption cross section from the diffuse field to the human infant ear canal. J Acoust Soc Am 1994; 95 (1) 355-371
  • 24 Margolis RH, Paul S, Saly GL, Schachern PA, Keefe DH. Wideband reflectance tympanometry in chinchillas and human. J Acoust Soc Am 2001; 110 (3 Pt 1): 1453-1464
  • 25 Sanford CA, Feeney MP. Effects of maturation on tympanometric wideband acoustic transfer functions in human infants. J Acoust Soc Am 2008; 124 (4) 2106-2122
  • 26 Hunter LL, Prieve BA, Kei J, Sanford CA. Pediatric applications of wideband acoustic immittance measures. Ear Hear 2013; 34 (Suppl. 01) 36S-42S
  • 27 Prieve BA, Vander Werff KR, Preston JL, Georgantas L. Identification of conductive hearing loss in young infants using tympanometry and wideband reflectance. Ear Hear 2013; 34 (2) 168-178
  • 28 Nakajima HH, Pisano DV, Röösli C , et al. Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study. Ear Hear 2012; 33 (1) 35-43
  • 29 Allen JB, Jeng PS, Levitt H. Evaluation of human middle ear function via an acoustic power assessment. J Rehabil Res Dev 2005; 42 (4) (Suppl. 02) 63-78
  • 30 Feeney MP, Keefe DH. Estimating the acoustic reflex threshold from wideband measures of reflectance, admittance, and power. Ear Hear 2001; 22 (4) 316-332
  • 31 Feeney MP, Keefe DH, Marryott LP. Contralateral acoustic reflex thresholds for tonal activators using wideband energy reflectance and admittance. J Speech Lang Hear Res 2003; 46 (1) 128-136
  • 32 Feeney MP, Keefe DH, Sanford CA. Wideband reflectance measures of the ipsilateral acoustic stapedius reflex threshold. Ear Hear 2004; 25 (5) 421-430
  • 33 Wever EG, Lawrence M. Physiological Acoustics. Princeton, NJ: Princeton University Press; 1954
  • 34 Rabinowitz WM. Acoustic-Reflex Effects on the Input Admittance and Transfer Characteristics of the Human Middle Ear. Ph.D. Thesis. Cambridge MA: Massachusetts Institute of Technology; 1977
  • 35 Peake WT, Rosowski JJ. Acoustic properties of the middle ear. In: Crocker MJ, , ed. Encyclopedia of Acoustics. New York, NY: Wiley; 1997: 1337-1346
  • 36 Arriaga MA, Luxford WM. Impedance audiometry and iatrogenic hearing loss. Otolaryngol Head Neck Surg 1993; 108 (1) 70-72
  • 37 Hunter LL, Ries DT, Schlauch RS, Levine SC, Ward WD. Safety and clinical performance of acoustic reflex tests. Ear Hear 1999; 20 (6) 506-514
  • 38 Popelka GR, Dubno JR. Comments on the acoustic-reflex response for bone-conducted signals. Acta Otolaryngol 1978; 86 (1–2) 64-70
  • 39 Lilly DJ. Evaluation of the response time of acoustic-immittance instruments. In: Silman S, , ed. The Acoustic Reflex. New York, NY: Academic; 1984
  • 40 Rosowski JJ, Peake WT, Lynch III TJ. Acoustic input-admittance of the alligator-lizard ear: nonlinear features. Hear Res 1984; 16 (3) 205-223
  • 41 Allen JB. Measurements of eardrum acoustic impedance. In: Allen JB, Hall JH, Hubbard A, Neely ST, Tubis A, , eds. Peripheral Auditory Mechanisms. New York, NY: Springer-Verlag; 1986: 44-51
  • 42 Voss SE, Allen JB. Measurement of acoustic impedance and reflectance in the human ear canal. J Acoust Soc Am 1994; 95 (1) 372-384
  • 43 Lynch III TJ, Peake WT, Rosowski JJ. Measurements of the acoustic input impedance of cat ears: 10.  Hz to 20 kHz. J Acoust Soc Am 1994; 96 (4) 2184-2209
  • 44 Feeney MP. Editorial: Eriksholm workshop on wideband absorbance measures of the middle ear. Ear Hear 2013; 34 (Suppl. 01) 1S-2S
  • 45 Egolf DP. Mathematical modeling of a probe-tube microphone. J Acoust Soc Am 1977; 61: 200-205
  • 46 Zuercher JC, Carlson EV, Killion MC. Small acoustic tubes: New approximations including isothermal and viscous effects. J Acoust Soc Am 1988; 83: 1653-1660
  • 47 Lynch III TJ. Signal Processing by the Cat Middle Ear: Admittance and Transmission, Measurements and Models. Cambridge MA: Massachusetts Institute of Technology; 1981
  • 48 Beranek LL, Mellow TJ. Acoustics: Sound Fields and Transducers. New York, NY: Academic Press; 2012