Semin Respir Crit Care Med 2015; 36(01): 099-110
DOI: 10.1055/s-0034-1396929
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Stenotrophomonas, Achromobacter, and Nonmelioid Burkholderia Species: Antimicrobial Resistance and Therapeutic Strategies

Iain J. Abbott
1   Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Victoria, Australia
,
Anton Y. Peleg
2   Department of Infectious Diseases, The Alfred Hospital, Victoria, Australia
3   Department of Microbiology, Monash University, Clayton, Victoria, Australia
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
02. Februar 2015 (online)

Abstract

Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and nonmelioid Burkholderia species, namely, Burkholderia cepacia complex, collectively are a group of troublesome nonfermenters. Although not inherently virulent organisms, these environmental Gram negatives can complicate treatment in those who are immunocompromised, critically ill in the intensive care unit and those patients with suppurative lung disease, such as cystic fibrosis. Through a range of intrinsic antimicrobial resistance mechanisms, virulence factors, and the ability to survive in biofilms, these opportunistic pathogens are well suited to persist, both in the environment and the host. Treatment recommendations are hindered by the difficulties in laboratory identification, the lack of reproducibility of antimicrobial susceptibility testing, the lack of clinical breakpoints, and the absence of clinical outcome data. Despite trimethoprim–sulfamethoxazole often being the mainstay of treatment, resistance is widely encountered, and alternative regimens, including combination therapy, are often used. This review will highlight the important aspects and unique challenges that these three nonfermenters pose, and, in the absence of clinical outcome data, our therapeutic recommendations will be based on reported antimicrobial susceptibility and pharmacokinetic/pharmacodynamic profiles.

 
  • References

  • 1 Brooke JS. Stenotrophomonas maltophilia: an emerging global opportunistic pathogen. Clin Microbiol Rev 2012; 25 (1) 2-41
  • 2 Svensson-Stadler LA, Mihaylova SA, Moore ER. Stenotrophomonas interspecies differentiation and identification by gyrB sequence analysis. FEMS Microbiol Lett 2012; 327 (1) 15-24
  • 3 Sousa SA, Ramos CG, Leitão JH. Burkholderia cepacia complex: emerging multihost pathogens equipped with a wide range of virulence factors and determinants. Int J Microbiol 2011; . doi: 10.1155/2011/607575
  • 4 Mahenthiralingam E, Bischof J, Byrne SK , et al. DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 2000; 38 (9) 3165-3173
  • 5 Vandamme P, Holmes B, Coenye T , et al. Burkholderia cenocepacia sp. nov.—a new twist to an old story. Res Microbiol 2003; 154 (2) 91-96
  • 6 Lynch III JP. Burkholderia cepacia complex: impact on the cystic fibrosis lung lesion. Semin Respir Crit Care Med 2009; 30 (5) 596-610
  • 7 Alexander BD, Petzold EW, Reller LB , et al. Survival after lung transplantation of cystic fibrosis patients infected with Burkholderia cepacia complex. Am J Transplant 2008; 8 (5) 1025-1030
  • 8 Manno G, Dalmastri C, Tabacchioni S , et al. Epidemiology and clinical course of Burkholderia cepacia complex infections, particularly those caused by different Burkholderia cenocepacia strains, among patients attending an Italian Cystic Fibrosis Center. J Clin Microbiol 2004; 42 (4) 1491-1497
  • 9 Drevinek P, Mahenthiralingam E. Burkholderia cenocepacia in cystic fibrosis: epidemiology and molecular mechanisms of virulence. Clin Microbiol Infect 2010; 16 (7) 821-830
  • 10 Lambiase A, Catania MR, Del Pezzo M , et al. Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 2011; 30 (8) 973-980
  • 11 Barrado L, Brañas P, Orellana MA , et al. Molecular characterization of Achromobacter isolates from cystic fibrosis and non-cystic fibrosis patients in Madrid, Spain. J Clin Microbiol 2013; 51 (6) 1927-1930
  • 12 Ridderberg W, Wang M, Nørskov-Lauritsen N. Multilocus sequence analysis of isolates of Achromobacter from patients with cystic fibrosis reveals infecting species other than Achromobacter xylosoxidans. J Clin Microbiol 2012; 50 (8) 2688-2694
  • 13 Sader HS, Jones RN. Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int J Antimicrob Agents 2005; 25 (2) 95-109
  • 14 Safdar A, Rolston KV. Stenotrophomonas maltophilia: changing spectrum of a serious bacterial pathogen in patients with cancer. Clin Infect Dis 2007; 45 (12) 1602-1609
  • 15 Porter S, Ketheesan N, Norton R. Bacteraemias in tropical Australia: changing trends over a 10-year period. Diagn Microbiol Infect Dis 2013; 75 (3) 266-270
  • 16 Parkins MD, Elborn JS. Newer antibacterial agents and their potential role in cystic fibrosis pulmonary exacerbation management. J Antimicrob Chemother 2010; 65 (9) 1853-1861
  • 17 Millar FA, Simmonds NJ, Hodson ME. Trends in pathogens colonising the respiratory tract of adult patients with cystic fibrosis, 1985-2005. J Cyst Fibros 2009; 8 (6) 386-391
  • 18 Kidd TJ, Douglas JM, Bergh HA, Coulter C, Bell SC. Burkholderia cepacia complex epidemiology in persons with cystic fibrosis from Australia and New Zealand. Res Microbiol 2008; 159 (3) 194-199
  • 19 Spilker T, Vandamme P, Lipuma JJ. Identification and distribution of Achromobacter species in cystic fibrosis. J Cyst Fibros 2013; 12 (3) 298-301
  • 20 Saiman L, Siegel J. Infection control in cystic fibrosis. Clin Microbiol Rev 2004; 17 (1) 57-71
  • 21 Barchitta M, Cipresso R, Giaquinta L , et al. Acquisition and spread of Acinetobacter baumannii and Stenotrophomonas maltophilia in intensive care patients. Int J Hyg Environ Health 2009; 212 (3) 330-337
  • 22 Pereira RH, Carvalho-Assef AP, Albano RM , et al. Achromobacter xylosoxidans: characterization of strains in Brazilian cystic fibrosis patients. J Clin Microbiol 2011; 49 (10) 3649-3651
  • 23 Di Bonaventura G, Spedicato I, D'Antonio D, Robuffo I, Piccolomini R. Biofilm formation by Stenotrophomonas maltophilia: modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime. Antimicrob Agents Chemother 2004; 48 (1) 151-160
  • 24 de Oliveira-Garcia D, Dall'Agnol M, Rosales M, Azzuz AC, Martinez MB, Girón JA. Characterization of flagella produced by clinical strains of Stenotrophomonas maltophilia. Emerg Infect Dis 2002; 8 (9) 918-923
  • 25 Van Acker H, Sass A, Bazzini S , et al. Biofilm-grown Burkholderia cepacia complex cells survive antibiotic treatment by avoiding production of reactive oxygen species. PLoS ONE 2013; 8 (3) e58943
  • 26 Trancassini M, Iebba V, Citerà N , et al. Outbreak of Achromobacter xylosoxidans in an Italian Cystic fibrosis center: genome variability, biofilm production, antibiotic resistance, and motility in isolated strains. Front Microbiol 2014; 5: 138
  • 27 Jakobsen TH, Hansen MA, Jensen PO , et al. Complete genome sequence of the cystic fibrosis pathogen Achromobacter xylosoxidans NH44784-1996 complies with important pathogenic phenotypes. PLoS ONE 2013; 8 (7) e68484
  • 28 Kataoka D, Fujiwara H, Kawakami T , et al. The indirect pathogenicity of Stenotrophomonas maltophilia. Int J Antimicrob Agents 2003; 22 (6) 601-606
  • 29 Ryan RP, Fouhy Y, Garcia BF , et al. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa. Mol Microbiol 2008; 68 (1) 75-86
  • 30 Wiley L, Bridge DR, Wiley LA, Odom JV, Elliott T, Olson JC. Bacterial biofilm diversity in contact lens-related disease: emerging role of Achromobacter, Stenotrophomonas, and Delftia. Invest Ophthalmol Vis Sci 2012; 53 (7) 3896-3905
  • 31 Ryan RP, Monchy S, Cardinale M , et al. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 2009; 7 (7) 514-525
  • 32 Mahenthiralingam E, Urban TA, Goldberg JB. The multifarious, multireplicon Burkholderia cepacia complex. Nat Rev Microbiol 2005; 3 (2) 144-156
  • 33 Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 2010; 60: 579-598
  • 34 Walsh F, Duffy B. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria. PLoS ONE 2013; 8 (6) e65567
  • 35 Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 2010; 8 (4) 251-259
  • 36 Amoureux L, Bador J, Fardeheb S , et al. Detection of Achromobacter xylosoxidans in hospital, domestic, and outdoor environmental samples and comparison with human clinical isolates. Appl Environ Microbiol 2013; 79 (23) 7142-7149
  • 37 Bosshard PP, Zbinden R, Abels S, Böddinghaus B, Altwegg M, Böttger EC. 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting Gram-negative bacteria in the clinical laboratory. J Clin Microbiol 2006; 44 (4) 1359-1366
  • 38 Ferroni A, Sermet-Gaudelus I, Abachin E , et al. Use of 16S rRNA gene sequencing for identification of nonfermenting gram-negative bacilli recovered from patients attending a single cystic fibrosis center. J Clin Microbiol 2002; 40 (10) 3793-3797
  • 39 Coenye T, Vandamme P, Govan JR, LiPuma JJ. Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 2001; 39 (10) 3427-3436
  • 40 Saiman L, Chen Y, Tabibi S , et al. Identification and antimicrobial susceptibility of Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. J Clin Microbiol 2001; 39 (11) 3942-3945
  • 41 Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 2013; 26 (3) 547-603
  • 42 Degand N, Carbonnelle E, Dauphin B , et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of nonfermenting gram-negative bacilli isolated from cystic fibrosis patients. J Clin Microbiol 2008; 46 (10) 3361-3367
  • 43 Marko DC, Saffert RT, Cunningham SA , et al. Evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of nonfermenting gram-negative bacilli isolated from cultures from cystic fibrosis patients. J Clin Microbiol 2012; 50 (6) 2034-2039
  • 44 Vanlaere E, Sergeant K, Dawyndt P , et al. Matrix-assisted laser desorption ionisation-time-of of-flight mass spectrometry of intact cells allows rapid identification of Burkholderia cepacia complex. J Microbiol Methods 2008; 75 (2) 279-286
  • 45 Lambiase A, Del Pezzo M, Cerbone D, Raia V, Rossano F, Catania MR. Rapid identification of Burkholderia cepacia complex species recovered from cystic fibrosis patients using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Microbiol Methods 2013; 92 (2) 145-149
  • 46 CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement. CLSI document M100-524. Wayne PA. Clinical and Laboratory Standards Institute; 2014
  • 47 Leclercq R, Cantón R, Brown DF , et al. EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect 2013; 19 (2) 141-160
  • 48 Dudley MN, Loutit J, Griffith DC. Aerosol antibiotics: considerations in pharmacological and clinical evaluation. Curr Opin Biotechnol 2008; 19 (6) 637-643
  • 49 Horsley A, Jones AM. Antibiotic treatment for Burkholderia cepacia complex in people with cystic fibrosis experiencing a pulmonary exacerbation. Cochrane Database Syst Rev 2012; 10: CD009529
  • 50 Hansen CR, Pressler T, Nielsen KG, Jensen PO, Bjarnsholt T, Høiby N. Inflammation in Achromobacter xylosoxidans infected cystic fibrosis patients. J Cyst Fibros 2010; 9 (1) 51-58
  • 51 Zelenitsky SA, Iacovides H, Ariano RE, Harding GK. Antibiotic combinations significantly more active than monotherapy in an in vitro infection model of Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis 2005; 51 (1) 39-43
  • 52 Brown GR. Cotrimoxazole - optimal dosing in the critically ill. Ann Intensive Care 2014; 4: 13
  • 53 Falagas ME, Valkimadi PE, Huang YT, Matthaiou DK, Hsueh PR. Therapeutic options for Stenotrophomonas maltophilia infections beyond co-trimoxazole: a systematic review. J Antimicrob Chemother 2008; 62 (5) 889-894
  • 54 Pompilio A, Catavitello C, Picciani C , et al. Subinhibitory concentrations of moxifloxacin decrease adhesion and biofilm formation of Stenotrophomonas maltophilia from cystic fibrosis. J Med Microbiol 2010; 59 (Pt 1) 76-81
  • 55 Wu K, Yau YC, Matukas L, Waters V. Biofilm compared to conventional antimicrobial susceptibility of Stenotrophomonas maltophilia Isolates from cystic fibrosis patients. Antimicrob Agents Chemother 2013; 57 (3) 1546-1548
  • 56 Garrison MW, Anderson DE, Campbell DM , et al. Stenotrophomonas maltophilia: emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrob Agents Chemother 1996; 40 (12) 2859-2864
  • 57 Cho SY, Kang CI, Kim J , et al. Can levofloxacin be a useful alternative to trimethoprim-sulfamethoxazole for treating Stenotrophomonas maltophilia bacteremia?. Antimicrob Agents Chemother 2014; 58 (1) 581-583
  • 58 Wang YL, Scipione MR, Dubrovskaya Y, Papadopoulos J. Monotherapy with fluoroquinolone or trimethoprim-sulfamethoxazole for treatment of Stenotrophomonas maltophilia infections. Antimicrob Agents Chemother 2014; 58 (1) 176-182
  • 59 Church D, Lloyd T, Peirano G, Pitout J. Antimicrobial susceptibility and combination testing of invasive Stenotrophomonas maltophilia isolates. Scand J Infect Dis 2013; 45 (4) 265-270
  • 60 Farrell DJ, Sader HS, Jones RN. Antimicrobial susceptibilities of a worldwide collection of Stenotrophomonas maltophilia isolates tested against tigecycline and agents commonly used for S. maltophilia infections. Antimicrob Agents Chemother 2010; 54 (6) 2735-2737
  • 61 Milne KE, Gould IM. Combination antimicrobial susceptibility testing of multidrug-resistant Stenotrophomonas maltophilia from cystic fibrosis patients. Antimicrob Agents Chemother 2012; 56 (8) 4071-4077
  • 62 Cheng AC, McBryde ES, Wuthiekanun V , et al. Dosing regimens of cotrimoxazole (trimethoprim-sulfamethoxazole) for melioidosis. Antimicrob Agents Chemother 2009; 53 (10) 4193-4199
  • 63 Zhou J, Chen Y, Tabibi S, Alba L, Garber E, Saiman L. Antimicrobial susceptibility and synergy studies of Burkholderia cepacia complex isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 2007; 51 (3) 1085-1088
  • 64 Dixit D, Madduri RP, Sharma R. The role of tigecycline in the treatment of infections in light of the new black box warning. Expert Rev Anti Infect Ther 2014; 12 (4) 397-400
  • 65 Rajendran R, Quinn RF, Murray C, McCulloch E, Williams C, Ramage G. Efflux pumps may play a role in tigecycline resistance in Burkholderia species. Int J Antimicrob Agents 2010; 36 (2) 151-154
  • 66 Avgeri SG, Matthaiou DK, Dimopoulos G, Grammatikos AP, Falagas ME. Therapeutic options for Burkholderia cepacia infections beyond co-trimoxazole: a systematic review of the clinical evidence. Int J Antimicrob Agents 2009; 33 (5) 394-404
  • 67 Trapnell BC, McColley SA, Kissner DG , et al; Phase 2 FTI Study Group. Fosfomycin/tobramycin for inhalation in patients with cystic fibrosis with pseudomonas airway infection. Am J Respir Crit Care Med 2012; 185 (2) 171-178
  • 68 Safdar A, Shelburne SA, Evans SE, Dickey BF. Inhaled therapeutics for prevention and treatment of pneumonia. Expert Opin Drug Saf 2009; 8 (4) 435-449
  • 69 Olland A, Falcoz PE, Kessler R, Massard G. Should cystic fibrosis patients infected with Burkholderia cepacia complex be listed for lung transplantation?. Interact Cardiovasc Thorac Surg 2011; 13 (6) 631-634
  • 70 Almuzara M, Limansky A, Ballerini V, Galanternik L, Famiglietti A, Vay C. In vitro susceptibility of Achromobacter spp. isolates: comparison of disk diffusion, Etest and agar dilution methods. Int J Antimicrob Agents 2010; 35 (1) 68-71
  • 71 Wang M, Ridderberg W, Hansen CR , et al. Early treatment with inhaled antibiotics postpones next occurrence of Achromobacter in cystic fibrosis. J Cyst Fibros 2013; 12 (6) 638-643
  • 72 Atalay S, Ece G, Samlioğlu P, Kose S, Maras G, Gonullu M. Clinical and microbiological evaluation of eight patients with isolated Achromobacter xylosoxidans. Scand J Infect Dis 2012; 44 (10) 798-801
  • 73 Bador J, Amoureux L, Blanc E, Neuwirth C. Innate aminoglycoside resistance of Achromobacter xylosoxidans is due to AxyXY-OprZ, an RND-type multidrug efflux pump. Antimicrob Agents Chemother 2013; 57 (1) 603-605
  • 74 Yamamoto M, Nagao M, Hotta G , et al. Molecular characterization of IMP-type metallo-β-lactamases among multidrug-resistant Achromobacter xylosoxidans. J Antimicrob Chemother 2012; 67 (9) 2110-2113
  • 75 Gibson RL, Burns JL, Ramsey BW. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 2003; 168 (8) 918-951
  • 76 Ciofu O, Hansen CR, Høiby N. Respiratory bacterial infections in cystic fibrosis. Curr Opin Pulm Med 2013; 19 (3) 251-258
  • 77 Biswas S, Dubus JC, Reynaud-Gaubert M, Stremler N, Rolain JM. Evaluation of colistin susceptibility in multidrug-resistant clinical isolates from cystic fibrosis, France. Eur J Clin Microbiol Infect Dis 2013; 32 (11) 1461-1464
  • 78 Vandamme P, Dawyndt P. Classification and identification of the Burkholderia cepacia complex: Past, present and future. Syst Appl Microbiol 2011; 34 (2) 87-95
  • 79 Drevinek P, Mahenthiralingam E, Burkholderia. In: de Filippis I, McKee ML. , eds. Molecular Typing in Bacterial Infections. New York: Humana Press; 2013: 301-308
  • 80 Abbott IJ, Slavin MA, Turnidge JD, Thursky KA, Worth LJ. Stenotrophomonas maltophilia: emerging disease patterns and challenges for treatment. Expert Rev Anti Infect Ther 2011; 9 (4) 471-488
  • 81 Papp-Wallace KM, Taracila MA, Gatta JA, Ohuchi N, Bonomo RA, Nukaga M. Insights into β-lactamases from Burkholderia species, two phylogenetically related yet distinct resistance determinants. J Biol Chem 2013; 288 (26) 19090-19102
  • 82 Pope CF, Gillespie SH, Moore JE, McHugh TD. Approaches to measure the fitness of Burkholderia cepacia complex isolates. J Med Microbiol 2010; 59 (Pt 6) 679-686
  • 83 Holden MT, Seth-Smith HM, Crossman LC , et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 2009; 191 (1) 261-277
  • 84 Pope CF, Gillespie SH, Pratten JR, McHugh TD. Fluoroquinolone-resistant mutants of Burkholderia cepacia. Antimicrob Agents Chemother 2008; 52 (3) 1201-1203
  • 85 Amoureux L, Bador J, Siebor E, Taillefumier N, Fanton A, Neuwirth C. Epidemiology and resistance of Achromobacter xylosoxidans from cystic fibrosis patients in Dijon, Burgundy: First French data. J Cyst Fibros 2013; 12 (2) 170-176
  • 86 Bador J, Amoureux L, Duez JM , et al. First description of an RND-type multidrug efflux pump in Achromobacter xylosoxidans, AxyABM. Antimicrob Agents Chemother 2011; 55 (10) 4912-4914
  • 87 Traglia GM, Almuzara M, Merkier AK , et al. Achromobacter xylosoxidans: an emerging pathogen carrying different elements involved in horizontal genetic transfer. Curr Microbiol 2012; 65 (6) 673-678
  • 88 Turton JF, Mustafa N, Shah J, Hampton CV, Pike R, Kenna DT. Identification of Achromobacter xylosoxidans by detection of the bla(OXA-114-like) gene intrinsic in this species. Diagn Microbiol Infect Dis 2011; 70 (3) 408-411
  • 89 Glupczynski Y, Hansen W, Freney J, Yourassowsky E. In vitro susceptibility of Alcaligenes denitrificans subsp. xylosoxidans to 24 antimicrobial agents. Antimicrob Agents Chemother 1988; 32 (2) 276-278
  • 90 Tsay RW, Lin LC, Chiou CS , et al. Alcaligenes xylosoxidans bacteremia: clinical features and microbiological characteristics of isolates. J Microbiol Immunol Infect 2005; 38 (3) 194-199
  • 91 Jacquier H, Le Monnier A, Carbonnelle E , et al; Gmc Study Group. In vitro antimicrobial activity of “last-resort” antibiotics against unusual nonfermenting Gram-negative bacilli clinical isolates. Microb Drug Resist 2012; 18 (4) 396-401
  • 92 Valenza G, Tappe D, Turnwald D , et al. Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of patients with cystic fibrosis. J Cyst Fibros 2008; 7 (2) 123-127
  • 93 Huang CH, Jang TN, Liu CY, Fung CP, Yu KW, Wong WW. Characteristics of patients with Burkholderia cepacia bacteremia. J Microbiol Immunol Infect 2001; 34 (3) 215-219
  • 94 Liao CH, Chang HT, Lai CC , et al. Clinical characteristics and outcomes of patients with Burkholderia cepacia bacteremia in an intensive care unit. Diagn Microbiol Infect Dis 2011; 70 (2) 260-266
  • 95 Hogardt M, Schmoldt S, Götzfried M, Adler K, Heesemann J. Pitfalls of polymyxin antimicrobial susceptibility testing of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J Antimicrob Chemother 2004; 54 (6) 1057-1061
  • 96 Rolston KV, Kontoyiannis DP, Yadegarynia D, Raad II. Nonfermentative gram-negative bacilli in cancer patients: increasing frequency of infection and antimicrobial susceptibility of clinical isolates to fluoroquinolones. Diagn Microbiol Infect Dis 2005; 51 (3) 215-218
  • 97 US FDA. FDA Drug Safety Communication: FDA warns of increased risk of death with IV antibacterial Tygacil (tigecycline) and approves new Boxed Warning. 2013. Accessed August 8, 2014. Available at http://www.fda.gov/Drugs/DrugSafety/ucm369580.htm
  • 98 Cooreman S, Jeurissen A. Comment on: Newer antibacterial agents and their potential role in cystic fibrosis pulmonary exacerbation management. J Antimicrob Chemother 2011; 66 (5) 1197-1198 , author reply 1198–1199
  • 99 Owens B. Silver makes antibiotics thousands of times more effective. Nature News. Macmillan Publishers Ltd, 19 June 2013. Accessed August 9, 2014. Available at http://www.nature.com/news/silver-makes-antibiotics-thousands-of-times-more-effective-1.13232