Semin Respir Crit Care Med 2015; 36(01): 111-125
DOI: 10.1055/s-0034-1398389
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Melioidosis: Evolving Concepts in Epidemiology, Pathogenesis, and Treatment

Bart J. Currie
1   Global and Tropical Health Division, Menzies School of Health Research and Infectious Diseases Department, Royal Darwin Hospital, Darwin, Australia
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
02. Februar 2015 (online)

Abstract

Infection with Burkholderia pseudomallei can result in asymptomatic seroconversion, a single skin lesion that may or may not heal spontaneously, a pneumonia which can be subacute or chronic and mimic tuberculosis or rapidly progressive resulting in fatal overwhelming sepsis. Latency with subsequent activation of disease is well recognized, but very uncommon. Melioidosis also has a myriad of other clinical presentations and diagnosis is often delayed because of this and because of difficulties with laboratory diagnosis and lack of recognition outside melioidosis-endemic regions. The perception of B. pseudomallei as a top tier biothreat agent has driven large funding for research, yet resources for diagnosis and therapy of melioidosis in many endemic locations remain extremely limited, with mortality as high as 50% in comparison to around 10% in regions where state-of-the-art intensive care therapy for sepsis is available. Fatal melioidosis is extremely unlikely from natural infection in a healthy person, provided the diagnosis is made early, ceftazidime or meropenem is commenced and intensive care therapy is available. While biothreat research is directed toward potential aerosol exposure to B. pseudomallei, the overall proportion of melioidosis cases resulting from inhalation rather than from percutaneous inoculation remains entirely uncertain, although the epidemiology supports a shift to inhalation during severe weather events such as cyclones and typhoons. What makes B. pseudomallei such a dangerous organism for patients with diabetes and other selective risk factors remains unclear, but microbial genome-wide association studies linking clinical aspects of melioidosis cases to nonubiquitous or polymorphic B. pseudomallei genes or genomic islands are beginning to uncover specific virulence signatures. Finally, what also remains uncertain is the global phylogeography of B. pseudomallei and whether melioidosis is spreading beyond historical locations or is just being unmasked in Africa and the Americas by better recognition and increased surveillance.

 
  • References

  • 1 Wiersinga WJ, Currie BJ, Peacock SJ. Melioidosis. N Engl J Med 2012; 367 (11) 1035-1044
  • 2 White NJ. Melioidosis. Lancet 2003; 361 (9370) 1715-1722
  • 3 Cheng AC, Currie BJ. Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev 2005; 18 (2) 383-416
  • 4 Leelarasamee A, Bovornkitti S. Melioidosis: review and update. Rev Infect Dis 1989; 11 (3) 413-425
  • 5 Vandamme P, Dawyndt P. Classification and identification of the Burkholderia cepacia complex: Past, present and future. Syst Appl Microbiol 2011; 34 (2) 87-95
  • 6 Compant S, Nowak J, Coenye T, Clément C, Ait Barka E. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 2008; 32 (4) 607-626
  • 7 Gee JE, Glass MB, Novak RT , et al. Recovery of a Burkholderia thailandensis-like isolate from an Australian water source. BMC Microbiol 2008; 8: 54
  • 8 Liu X, Biswas S, Berg MG , et al. Genomics-guided discovery of thailanstatins A, B, and C As pre-mRNA splicing inhibitors and antiproliferative agents from Burkholderia thailandensis MSMB43. J Nat Prod 2013; 76 (4) 685-693
  • 9 Coenye T, Spilker T, Van Schoor A, LiPuma JJ, Vandamme P. Recovery of Burkholderia cenocepacia strain PHDC from cystic fibrosis patients in Europe. Thorax 2004; 59 (11) 952-954
  • 10 Whitmore A, Krishnaswami CS. An account of the discovery of a hitherto underscribed infective disease occurring among the population of Rangoon. Ind Med Gaz 1912; 47: 262-267
  • 11 Stanton AT, Fletcher W. Melioidosis: a new disease of the tropics. Trans Fourth Congr Far East Assoc Trop Med 1921; 2: 196-198
  • 12 Godoy D, Randle G, Simpson AJ , et al. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 2003; 41 (5) 2068-2079
  • 13 Holden MT, Titball RW, Peacock SJ , et al. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 2004; 101 (39) 14240-14245
  • 14 Nierman WC, DeShazer D, Kim HS , et al. Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 2004; 101 (39) 14246-14251
  • 15 Deitchman S, Sokas R. Glanders in a military research microbiologist. N Engl J Med 2001; 345 (22) 1644
  • 16 Currie BJ, Ward L, Cheng AC. The epidemiology and clinical spectrum of melioidosis: 540 cases from the 20 year Darwin prospective study. PLoS Negl Trop Dis 2010; 4 (11) e900
  • 17 Wheelis M. First shots fired in biological warfare. Nature 1998; 395 (6699) 213
  • 18 Butler D. Viral research faces clampdown. Nature 2012; 490 (7421) 456
  • 19 Dance DA. Melioidosis: the tip of the iceberg?. Clin Microbiol Rev 1991; 4 (1) 52-60
  • 20 Leelarasamee A. Melioidosis in Southeast Asia. Acta Trop 2000; 74 (2-3) 129-132
  • 21 Limmathurotsakul D, Wongratanacheewin S, Teerawattanasook N , et al. Increasing incidence of human melioidosis in Northeast Thailand. Am J Trop Med Hyg 2010; 82 (6) 1113-1117
  • 22 Chaowagul W, White NJ, Dance DA , et al. Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J Infect Dis 1989; 159 (5) 890-899
  • 23 Parameswaran U, Baird RW, Ward LM, Currie BJ. Melioidosis at Royal Darwin Hospital in the big 2009-2010 wet season: comparison with the preceding 20 years. Med J Aust 2012; 196 (5) 345-348
  • 24 Currie BJ, Dance DA, Cheng AC. The global distribution of Burkholderia pseudomallei and melioidosis: an update. Trans R Soc Trop Med Hyg 2008; 102 (Suppl. 01) S1-S4
  • 25 Inglis TJ, Rolim DB, Sousa AdeQ. Melioidosis in the Americas. Am J Trop Med Hyg 2006; 75 (5) 947-954
  • 26 Doker TJ, Sharp TM, Rivera-Garcia B , et al. Contact Investigation of Melioidosis Cases Reveals Regional Endemicity in Puerto Rico. Clin Infect Dis 2014;
  • 27 Garin B, Djaomazala I, Dubois-Cauwelaert N , et al; Mahafaly. Autochthonous melioidosis in humans, Madagascar, 2012 and 2013. Emerg Infect Dis 2014; 20 (10) 1739-1741
  • 28 Katangwe T, Purcell J, Bar-Zeev N , et al. Human melioidosis, Malawi, 2011. Emerg Infect Dis 2013; 19 (6) 981-984
  • 29 Kaestli M, Schmid M, Mayo M , et al. Out of the ground: aerial and exotic habitats of the melioidosis bacterium Burkholderia pseudomallei in grasses in Australia. Environ Microbiol 2012; 14 (8) 2058-2070
  • 30 Pearson T, Giffard P, Beckstrom-Sternberg S , et al. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer. BMC Biol 2009; 7: 78
  • 31 Gee JE, Allender CJ, Tuanyok A, Elrod MG, Hoffmaster AR. Burkholderia pseudomallei type G in Western Hemisphere. Emerg Infect Dis 2014; 20 (4) 682-684
  • 32 Bodilsen J, Vammen S, Fuursted K, Hjort U. Mycotic aneurysm caused by Burkholderia pseudomallei in a previously healthy returning traveller. BMJ Case Rep 2014; Sep 22;2014. pii: bcr2013202824. doi: 10.1136/bcr-2013-202824
  • 33 Currie BJ. Melioidosis: an important cause of pneumonia in residents of and travellers returned from endemic regions. Eur Respir J 2003; 22 (3) 542-550
  • 34 Doker TJ, Quinn CL, Salehi ED , et al; Melioidosis Investigation Team. Fatal Burkholderia pseudomallei infection initially reported as a Bacillus species, Ohio, 2013. Am J Trop Med Hyg 2014; 91 (4) 743-746
  • 35 Stewart T, Engelthaler DM, Blaney DD , et al. Epidemiology and investigation of melioidosis, Southern Arizona. Emerg Infect Dis 2011; 17 (7) 1286-1288
  • 36 Engelthaler DM, Bowers J, Schupp JA , et al. Molecular investigations of a locally acquired case of melioidosis in Southern AZ, USA. PLoS Negl Trop Dis 2011; 5 (10) e1347
  • 37 Limmathurotsakul D, Kanoksil M, Wuthiekanun V , et al. Activities of daily living associated with acquisition of melioidosis in northeast Thailand: a matched case-control study. PLoS Negl Trop Dis 2013; 7 (2) e2072
  • 38 Inglis TJ, Garrow SC, Henderson M , et al. Burkholderia pseudomallei traced to water treatment plant in Australia. Emerg Infect Dis 2000; 6 (1) 56-59
  • 39 Currie BJ, Mayo M, Anstey NM, Donohoe P, Haase A, Kemp DJ. A cluster of melioidosis cases from an endemic region is clonal and is linked to the water supply using molecular typing of Burkholderia pseudomallei isolates. Am J Trop Med Hyg 2001; 65 (3) 177-179
  • 40 Ralph A, McBride J, Currie BJ. Transmission of Burkholderia pseudomallei via breast milk in northern Australia. Pediatr Infect Dis J 2004; 23 (12) 1169-1171
  • 41 Thatrimontrichai A, Maneenil G. Neonatal melioidosis: systematic review of the literature. Pediatr Infect Dis J 2012; 31 (11) 1195-1197
  • 42 Choy JL, Mayo M, Janmaat A, Currie BJ. Animal melioidosis in Australia. Acta Trop 2000; 74 (2-3) 153-158
  • 43 Cheng AC, Jacups SP, Gal D, Mayo M, Currie BJ. Extreme weather events and environmental contamination are associated with case-clusters of melioidosis in the Northern Territory of Australia. Int J Epidemiol 2006; 35 (2) 323-329
  • 44 Lo TJ, Ang LW, James L, Goh KT. Melioidosis in a tropical city state, Singapore. Emerg Infect Dis 2009; 15 (10) 1645-1647
  • 45 Currie BJ, Jacups SP. Intensity of rainfall and severity of melioidosis, Australia. Emerg Infect Dis 2003; 9 (12) 1538-1542
  • 46 Ko WC, Cheung BM, Tang HJ , et al. Melioidosis outbreak after typhoon, southern Taiwan. Emerg Infect Dis 2007; 13 (6) 896-898
  • 47 Chen YL, Yen YC, Yang CY , et al. The concentrations of ambient Burkholderia pseudomallei during typhoon season in endemic area of melioidosis in Taiwan. PLoS Negl Trop Dis 2014; 8 (5) e2877
  • 48 Currie BJ, Fisher DA, Howard DM , et al. The epidemiology of melioidosis in Australia and Papua New Guinea. Acta Trop 2000; 74 (2-3) 121-127
  • 49 Allworth AM. Tsunami lung: a necrotising pneumonia in survivors of the Asian tsunami. Med J Aust 2005; 182 (7) 364
  • 50 Athan E, Allworth AM, Engler C, Bastian I, Cheng AC. Melioidosis in tsunami survivors. Emerg Infect Dis 2005; 11 (10) 1638-1639
  • 51 Chierakul W, Winothai W, Wattanawaitunechai C , et al. Melioidosis in 6 tsunami survivors in southern Thailand. Clin Infect Dis 2005; 41 (7) 982-990
  • 52 Howe C, Sampath A, Spotnitz M. The pseudomallei group: a review. J Infect Dis 1971; 124 (6) 598-606
  • 53 Amadasi S, Dal Zoppo S, Bonomini A , et al. A Case of Melioidosis Probably Acquired by Inhalation of Dusts During a Helicopter Flight in a Healthy Traveler Returning From Singapore. J Travel Med 2014;
  • 54 Jeddeloh JA, Fritz DL, Waag DM, Hartings JM, Andrews GP. Biodefense-driven murine model of pneumonic melioidosis. Infect Immun 2003; 71 (1) 584-587
  • 55 West TE, Myers ND, Liggitt HD, Skerrett SJ. Murine pulmonary infection and inflammation induced by inhalation of Burkholderia pseudomallei. Int J Exp Pathol 2012; 93 (6) 421-428
  • 56 Nelson M, Dean RE, Salguero FJ , et al. Development of an acute model of inhalational melioidosis in the common marmoset (Callithrix jacchus). Int J Exp Pathol 2011; 92 (6) 428-435
  • 57 Titball RW, Russell P, Cuccui J , et al. Burkholderia pseudomallei: animal models of infection. Trans R Soc Trop Med Hyg 2008; 102 (Suppl. 01) S111-S116
  • 58 Cheng AC, Currie BJ, Dance DA , et al. Clinical definitions of melioidosis. Am J Trop Med Hyg 2013; 88 (3) 411-413
  • 59 Cheng AC, Wuthiekanun V, Limmathurotsakul D, Chierakul W, Peacock SJ. Intensity of exposure and incidence of melioidosis in Thai children. Trans R Soc Trop Med Hyg 2008; 102 (Suppl. 01) S37-S39
  • 60 Wuthiekanun V, Chierakul W, Langa S , et al. Development of antibodies to Burkholderia pseudomallei during childhood in melioidosis-endemic northeast Thailand. Am J Trop Med Hyg 2006; 74 (6) 1074-1075
  • 61 James GL, Delaney B, Ward L, Freeman K, Mayo M, Currie BJ. Surprisingly low seroprevalence of Burkholderia pseudomallei in exposed healthy adults in the Darwin region of tropical Australia where melioidosis is highly endemic. Clin Vaccine Immunol 2013; 20 (5) 759-760
  • 62 Ashdown LR, Guard RW. The prevalence of human melioidosis in Northern Queensland. Am J Trop Med Hyg 1984; 33 (3) 474-478
  • 63 Clayton AJ, Lisella RS, Martin DG. Melioidosis: a serological survey in military personnel. Mil Med 1973; 138 (1) 24-26
  • 64 Currie BJ, Fisher DA, Anstey NM, Jacups SP. Melioidosis: acute and chronic disease, relapse and re-activation. Trans R Soc Trop Med Hyg 2000; 94 (3) 301-304
  • 65 Suputtamongkol Y, Hall AJ, Dance DA , et al. The epidemiology of melioidosis in Ubon Ratchatani, northeast Thailand. Int J Epidemiol 1994; 23 (5) 1082-1090
  • 66 Ngauy V, Lemeshev Y, Sadkowski L, Crawford G. Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol 2005; 43 (2) 970-972
  • 67 Kingston CW. Chronic or latent melioidosis. Med J Aust 1971; 2 (12) 618-621
  • 68 McLeod C, Morris PS, Bauert PA , et al. Clinical presentation and medical management of melioidosis in children: a 24-year prospective study in the Northern Territory of Australia and review of the literature. Clin Infect Dis 2014;
  • 69 Suputtamongkol Y, Chaowagul W, Chetchotisakd P , et al. Risk factors for melioidosis and bacteremic melioidosis. Clin Infect Dis 1999; 29 (2) 408-413
  • 70 Limmathurotsakul D, Chaowagul W, Chierakul W , et al. Risk factors for recurrent melioidosis in northeast Thailand. Clin Infect Dis 2006; 43 (8) 979-986
  • 71 Currie BJ, Fisher DA, Howard DM , et al. Endemic melioidosis in tropical northern Australia: a 10-year prospective study and review of the literature. Clin Infect Dis 2000; 31 (4) 981-986
  • 72 Easton A, Haque A, Chu K, Lukaszewski R, Bancroft GJ. A critical role for neutrophils in resistance to experimental infection with Burkholderia pseudomallei. J Infect Dis 2007; 195 (1) 99-107
  • 73 Wiersinga WJ, van der Poll T, White NJ, Day NP, Peacock SJ. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol 2006; 4 (4) 272-282
  • 74 Wiersinga WJ, Wieland CW, Dessing MC , et al. Toll-like receptor 2 impairs host defense in gram-negative sepsis caused by Burkholderia pseudomallei (Melioidosis). PLoS Med 2007; 4 (7) e248
  • 75 West TE, Myers ND, Chantratita N , et al. NLRC4 and TLR5 each contribute to host defense in respiratory melioidosis. PLoS Negl Trop Dis 2014; 8 (9) e3178
  • 76 Myers ND, Chantratita N, Berrington WR , et al. The role of NOD2 in murine and human melioidosis. J Immunol 2014; 192 (1) 300-307
  • 77 Nuntayanuwat S, Dharakul T, Chaowagul W, Songsivilai S. Polymorphism in the promoter region of tumor necrosis factor-alpha gene is associated with severe meliodosis. Hum Immunol 1999; 60 (10) 979-983
  • 78 Chantratita N, Tandhavanant S, Myers ND , et al. Common TLR1 genetic variation is not associated with death from melioidosis, a common cause of sepsis in rural Thailand. PLoS ONE 2014; 9 (1) e83285
  • 79 Chantratita N, Tandhavanant S, Myers ND , et al. Screen of whole blood responses to flagellin identifies TLR5 variation associated with outcome in melioidosis. Genes Immun 2014; 15 (2) 63-71
  • 80 West TE, Chierakul W, Chantratita N , et al. Toll-like receptor 4 region genetic variants are associated with susceptibility to melioidosis. Genes Immun 2012; 13 (1) 38-46
  • 81 West TE, Chantratita N, Chierakul W , et al. Impaired TLR5 functionality is associated with survival in melioidosis. J Immunol 2013; 190 (7) 3373-3379
  • 82 Barnes JL, Warner J, Melrose W , et al. Adaptive immunity in melioidosis: a possible role for T cells in determining outcome of infection with Burkholderia pseudomallei. Clin Immunol 2004; 113 (1) 22-28
  • 83 Ketheesan N, Barnes JL, Ulett GC , et al. Demonstration of a cell-mediated immune response in melioidosis. J Infect Dis 2002; 186 (2) 286-289
  • 84 Chierakul W, Wuthiekanun V, Chaowagul W , et al. Short report: disease severity and outcome of melioidosis in HIV coinfected individuals. Am J Trop Med Hyg 2005; 73 (6) 1165-1166
  • 85 Sarovich DS, Ward L, Price EP , et al. Recurrent melioidosis in the Darwin Prospective Melioidosis Study: improving therapies mean that relapse cases are now rare. J Clin Microbiol 2014; 52 (2) 650-653
  • 86 Tuanyok A, Auerbach RK, Brettin TS , et al. A horizontal gene transfer event defines two distinct groups within Burkholderia pseudomallei that have dissimilar geographic distributions. J Bacteriol 2007; 189 (24) 9044-9049
  • 87 Tuanyok A, Leadem BR, Auerbach RK , et al. Genomic islands from five strains of Burkholderia pseudomallei. BMC Genomics 2008; 9: 566
  • 88 Reckseidler-Zenteno SL, DeVinney R, Woods DE. The capsular polysaccharide of Burkholderia pseudomallei contributes to survival in serum by reducing complement factor C3b deposition. Infect Immun 2005; 73 (2) 1106-1115
  • 89 DeShazer D, Brett PJ, Woods DE. The type II O-antigenic polysaccharide moiety of Burkholderia pseudomallei lipopolysaccharide is required for serum resistance and virulence. Mol Microbiol 1998; 30 (5) 1081-1100
  • 90 Stevens MP, Wood MW, Taylor LA , et al. An Inv/Mxi-Spa-like type III protein secretion system in Burkholderia pseudomallei modulates intracellular behaviour of the pathogen. Mol Microbiol 2002; 46 (3) 649-659
  • 91 Burtnick MN, Brett PJ, Harding SV , et al. The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun 2011; 79 (4) 1512-1525
  • 92 Ulrich RL, Deshazer D, Brueggemann EE, Hines HB, Oyston PC, Jeddeloh JA. Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. J Med Microbiol 2004; 53 (Pt 11) 1053-1064
  • 93 Cruz-Migoni A, Hautbergue GM, Artymiuk PJ , et al. A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A. Science 2011; 334 (6057) 821-824
  • 94 Chantratita N, Tandhavanant S, Wikraiphat C , et al. Proteomic analysis of colony morphology variants of Burkholderia pseudomallei defines a role for the arginine deiminase system in bacterial survival. J Proteomics 2012; 75 (3) 1031-1042
  • 95 Chantratita N, Wuthiekanun V, Boonbumrung K , et al. Biological relevance of colony morphology and phenotypic switching by Burkholderia pseudomallei. J Bacteriol 2007; 189 (3) 807-817
  • 96 Ulett GC, Currie BJ, Clair TW , et al. Burkholderia pseudomallei virulence: definition, stability and association with clonality. Microbes Infect 2001; 3 (8) 621-631
  • 97 Sarovich DS, Price EP, Webb JR , et al. Variable virulence factors in Burkholderia pseudomallei (melioidosis) associated with human disease. PLoS ONE 2014; 9 (3) e91682
  • 98 Achana V, Silpapojakul K, Thininta W, Kalnaowakul S. Acute Pseudomonas pseudomallei pneumonia and septicemia following aspiration of contaminated water: a case report. Southeast Asian J Trop Med Public Health 1985; 16 (3) 500-504
  • 99 Lee N, Wu JL, Lee CH, Tsai WC. Pseudomonas pseudomallei infection from drowning: the first reported case in Taiwan. J Clin Microbiol 1985; 22 (3) 352-354
  • 100 Meumann EM, Cheng AC, Ward L, Currie BJ. Clinical features and epidemiology of melioidosis pneumonia: results from a 21-year study and review of the literature. Clin Infect Dis 2012; 54 (3) 362-369
  • 101 Gibney KB, Cheng AC, Currie BJ. Cutaneous melioidosis in the tropical top end of Australia: a prospective study and review of the literature. Clin Infect Dis 2008; 47 (5) 603-609
  • 102 Dance DA, Davis TM, Wattanagoon Y , et al. Acute suppurative parotitis caused by Pseudomonas pseudomallei in children. J Infect Dis 1989; 159 (4) 654-660
  • 103 Pagnarith Y, Kumar V, Thaipadungpanit J , et al. Emergence of pediatric melioidosis in Siem Reap, Cambodia. Am J Trop Med Hyg 2010; 82 (6) 1106-1112
  • 104 Morse LP, Moller CC, Harvey E , et al. Prostatic abscess due to Burkholderia pseudomallei: 81 cases from a 19-year prospective melioidosis study. J Urol 2009; 182 (2) 542-547 , discussion 547
  • 105 Jabbar Z, Currie BJ. Melioidosis and the kidney. Nephrology (Carlton) 2013; 18 (3) 169-175
  • 106 Woods II ML, Currie BJ, Howard DM , et al. Neurological melioidosis: seven cases from the Northern Territory of Australia. Clin Infect Dis 1992; 15 (1) 163-169
  • 107 Currie BJ, Fisher DA, Howard DM, Burrow JN. Neurological melioidosis. Acta Trop 2000; 74 (2-3) 145-151
  • 108 Koszyca B, Currie BJ, Blumbergs PC. The neuropathology of melioidosis: two cases and a review of the literature. Clin Neuropathol 2004; 23 (5) 195-203
  • 109 Chadwick DR, Ang B, Sitoh YY, Lee CC. Cerebral melioidosis in Singapore: a review of five cases. Trans R Soc Trop Med Hyg 2002; 96 (1) 72-76
  • 110 Owen SJ, Batzloff M, Chehrehasa F , et al. Nasal-associated lymphoid tissue and olfactory epithelium as portals of entry for Burkholderia pseudomallei in murine melioidosis. J Infect Dis 2009; 199 (12) 1761-1770
  • 111 St John JA, Ekberg JA, Dando SJ , et al. Burkholderia pseudomallei penetrates the brain via destruction of the olfactory and trigeminal nerves: implications for the pathogenesis of neurological melioidosis. MBio 2014; 5 (2) e00025
  • 112 Morse LP, Smith J, Mehta J, Ward L, Cheng AC, Currie BJ. Osteomyelitis and septic arthritis from infection with Burkholderia pseudomallei: A 20-year prospective melioidosis study from northern Australia. J Orthop 2013; 10 (2) 86-91
  • 113 Cooper A, Williams NL, Morris JL, Norton RE, Ketheesan N, Schaeffer PM. ELISA and immuno-polymerase chain reaction assays for the sensitive detection of melioidosis. Diagn Microbiol Infect Dis 2013; 75 (2) 135-138
  • 114 Cheng AC, O'brien M, Freeman K, Lum G, Currie BJ. Indirect hemagglutination assay in patients with melioidosis in northern Australia. Am J Trop Med Hyg 2006; 74 (2) 330-334
  • 115 Lowe P, Engler C, Norton R. Comparison of automated and nonautomated systems for identification of Burkholderia pseudomallei. J Clin Microbiol 2002; 40 (12) 4625-4627
  • 116 Podin Y, Kaestli M, McMahon N , et al. Reliability of automated biochemical identification of Burkholderia pseudomallei is regionally dependent. J Clin Microbiol 2013; 51 (9) 3076-3078
  • 117 Cunningham SA, Patel R. Importance of using Bruker's security-relevant library for Biotyper identification of Burkholderia pseudomallei, Brucella species, and Francisella tularensis. J Clin Microbiol 2013; 51 (5) 1639-1640
  • 118 Peacock SJ, Chieng G, Cheng AC , et al. Comparison of Ashdown's medium, Burkholderia cepacia medium, and Burkholderia pseudomallei selective agar for clinical isolation of Burkholderia pseudomallei. J Clin Microbiol 2005; 43 (10) 5359-5361
  • 119 Wuthiekanun V, Dance DA, Wattanagoon Y, Supputtamongkol Y, Chaowagul W, White NJ. The use of selective media for the isolation of Pseudomonas pseudomallei in clinical practice. J Med Microbiol 1990; 33 (2) 121-126
  • 120 Dance DA, Wuthiekanun V, Naigowit P, White NJ. Identification of Pseudomonas pseudomallei in clinical practice: use of simple screening tests and API 20NE. J Clin Pathol 1989; 42 (6) 645-648
  • 121 Novak RT, Glass MB, Gee JE , et al. Development and evaluation of a real-time PCR assay targeting the type III secretion system of Burkholderia pseudomallei. J Clin Microbiol 2006; 44 (1) 85-90
  • 122 Amornchai P, Chierakul W, Wuthiekanun V , et al. Accuracy of Burkholderia pseudomallei identification using the API 20NE system and a latex agglutination test. J Clin Microbiol 2007; 45 (11) 3774-3776
  • 123 Chantratita N, Tandhavanant S, Wongsuvan G , et al. Rapid detection of Burkholderia pseudomallei in blood cultures using a monoclonal antibody-based immunofluorescent assay. Am J Trop Med Hyg 2013; 89 (5) 971-972
  • 124 Kaestli M, Richardson LJ, Colman RE , et al. Comparison of TaqMan PCR assays for detection of the melioidosis agent Burkholderia pseudomallei in clinical specimens. J Clin Microbiol 2012; 50 (6) 2059-2062
  • 125 Meumann EM, Novak RT, Gal D , et al. Clinical evaluation of a type III secretion system real-time PCR assay for diagnosing melioidosis. J Clin Microbiol 2006; 44 (8) 3028-3030
  • 126 Chantratita N, Meumann E, Thanwisai A , et al. Loop-mediated isothermal amplification method targeting the TTS1 gene cluster for detection of Burkholderia pseudomallei and diagnosis of melioidosis. J Clin Microbiol 2008; 46 (2) 568-573
  • 127 Wuthiekanun V, Desakorn V, Wongsuvan G , et al. Rapid immunofluorescence microscopy for diagnosis of melioidosis. Clin Diagn Lab Immunol 2005; 12 (4) 555-556
  • 128 Houghton RL, Reed DE, Hubbard MA , et al. Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis. PLoS Negl Trop Dis 2014; 8 (3) e2727
  • 129 Dance D. Treatment and prophylaxis of melioidosis. Int J Antimicrob Agents 2014; 43 (4) 310-318
  • 130 Lipsitz R, Garges S, Aurigemma R , et al. Workshop on treatment of and postexposure prophylaxis for Burkholderia pseudomallei and B. mallei Infection, 2010. Emerg Infect Dis 2012; 18 (12) e2
  • 131 Peacock SJ, Schweizer HP, Dance DA , et al. Management of accidental laboratory exposure to Burkholderia pseudomallei and B. mallei. Emerg Infect Dis 2008; 14 (7) e2
  • 132 White NJ, Dance DA, Chaowagul W, Wattanagoon Y, Wuthiekanun V, Pitakwatchara N. Halving of mortality of severe melioidosis by ceftazidime. Lancet 1989; 2 (8665) 697-701
  • 133 Simpson AJ, Suputtamongkol Y, Smith MD , et al. Comparison of imipenem and ceftazidime as therapy for severe melioidosis. Clin Infect Dis 1999; 29 (2) 381-387
  • 134 Smith MD, Wuthiekanun V, Walsh AL, White NJ. Susceptibility of Pseudomonas pseudomallei to some newer beta-lactam antibiotics and antibiotic combinations using time-kill studies. J Antimicrob Chemother 1994; 33 (1) 145-149
  • 135 Smith MD, Wuthiekanun V, Walsh AL, White NJ. In-vitro activity of carbapenem antibiotics against beta-lactam susceptible and resistant strains of Burkholderia pseudomallei. J Antimicrob Chemother 1996; 37 (3) 611-615
  • 136 Cheng AC, Fisher DA, Anstey NM, Stephens DP, Jacups SP, Currie BJ. Outcomes of patients with melioidosis treated with meropenem. Antimicrob Agents Chemother 2004; 48 (5) 1763-1765
  • 137 Huffam S, Jacups SP, Kittler P, Currie BJ. Out of hospital treatment of patients with melioidosis using ceftazidime in 24 h elastomeric infusors, via peripherally inserted central catheters. Trop Med Int Health 2004; 9 (6) 715-717
  • 138 Chierakul W, Anunnatsiri S, Short JM , et al. Two randomized controlled trials of ceftazidime alone versus ceftazidime in combination with trimethoprim-sulfamethoxazole for the treatment of severe melioidosis. Clin Infect Dis 2005; 41 (8) 1105-1113
  • 139 Chierakul W, Anunnatsiri S, Chaowagul W, Peacock SJ, Chetchotisakd P, Day NP. Addition of trimethoprim-sulfamethoxazole to ceftazidime during parenteral treatment of melioidosis is not associated with a long-term outcome benefit. Clin Infect Dis 2007; 45 (4) 521-523
  • 140 Wuthiekanun V, Amornchai P, Saiprom N , et al. Survey of antimicrobial resistance in clinical Burkholderia pseudomallei isolates over two decades in Northeast Thailand. Antimicrob Agents Chemother 2011; 55 (11) 5388-5391
  • 141 Chantratita N, Rholl DA, Sim B , et al. Antimicrobial resistance to ceftazidime involving loss of penicillin-binding protein 3 in Burkholderia pseudomallei. Proc Natl Acad Sci U S A 2011; 108 (41) 17165-17170
  • 142 Sarovich DS, Price EP, Von Schulze AT , et al. Characterization of ceftazidime resistance mechanisms in clinical isolates of Burkholderia pseudomallei from Australia. PLoS ONE 2012; 7 (2) e30789
  • 143 Crowe A, McMahon N, Currie BJ, Baird RW. Current antimicrobial susceptibility of first-episode melioidosis Burkholderia pseudomallei isolates from the Northern Territory, Australia. Int J Antimicrob Agents 2014; 44 (2) 160-162
  • 144 Chetchotisakd P, Chierakul W, Chaowagul W , et al. Trimethoprim-sulfamethoxazole versus trimethoprim-sulfamethoxazole plus doxycycline as oral eradicative treatment for melioidosis (MERTH): a multicentre, double-blind, non-inferiority, randomised controlled trial. Lancet 2014; 383 (9919) 807-814
  • 145 Dance DA, Davong V, Soeng S, Phetsouvanh R, Newton PN, Turner P. Trimethoprim/sulfamethoxazole resistance in Burkholderia pseudomallei. Int J Antimicrob Agents 2014; 44 (4) 368-369
  • 146 Jenney AW, Lum G, Fisher DA, Currie BJ. Antibiotic susceptibility of Burkholderia pseudomallei from tropical northern Australia and implications for therapy of melioidosis. Int J Antimicrob Agents 2001; 17 (2) 109-113
  • 147 Dance DA, Wuthiekanun V, Chaowagul W, Suputtamongkol Y, White NJ. Development of resistance to ceftazidime and co-amoxiclav in Pseudomonas pseudomallei. [letter] J Antimicrob Chemother 1991; 28 (2) 321-324
  • 148 Dance DA, Wuthiekanun V, Chaowagul W, White NJ. The antimicrobial susceptibility of Pseudomonas pseudomallei. Emergence of resistance in vitro and during treatment. J Antimicrob Chemother 1989; 24 (3) 295-309
  • 149 Dance DA, Wuthiekanun V, White NJ, Chaowagul W. Antibiotic resistance in Pseudomonas pseudomallei. Lancet 1988; 1 (8592) 994-995
  • 150 Chaowagul W, Simpson AJ, Suputtamongkol Y, Smith MD, Angus BJ, White NJ. A comparison of chloramphenicol, trimethoprim-sulfamethoxazole, and doxycycline with doxycycline alone as maintenance therapy for melioidosis. Clin Infect Dis 1999; 29 (2) 375-380
  • 151 Cheng AC, Chierakul W, Chaowagul W , et al. Consensus guidelines for dosing of amoxicillin-clavulanate in melioidosis. Am J Trop Med Hyg 2008; 78 (2) 208-209
  • 152 Cheng AC, McBryde ES, Wuthiekanun V , et al. Dosing regimens of cotrimoxazole (trimethoprim-sulfamethoxazole) for melioidosis. Antimicrob Agents Chemother 2009; 53 (10) 4193-4199
  • 153 Chaowagul W, Suputtamongkol Y, Dance DA, Rajchanuvong A, Pattara-arechachai J, White NJ. Relapse in melioidosis: incidence and risk factors. J Infect Dis 1993; 168 (5) 1181-1185
  • 154 Limmathurotsakul D, Chaowagul W, Chantratita N , et al. A simple scoring system to differentiate between relapse and re-infection in patients with recurrent melioidosis. PLoS Negl Trop Dis 2008; 2 (10) e327
  • 155 Lumbiganon P, Chotechuangnirun N, Kosalaraksa P, Teeratakulpisarn J. Localized melioidosis in children in Thailand: treatment and long-term outcome. J Trop Pediatr 2011; 57 (3) 185-191
  • 156 Cheng AC, West TE, Limmathurotsakul D, Peacock SJ. Strategies to reduce mortality from bacterial sepsis in adults in developing countries. PLoS Med 2008; 5 (8) e175
  • 157 Cheng AC, Stephens DP, Anstey NM, Currie BJ. Adjunctive granulocyte colony-stimulating factor for treatment of septic shock due to melioidosis. Clin Infect Dis 2004; 38 (1) 32-37
  • 158 Cheng AC, Limmathurotsakul D, Chierakul W , et al. A randomized controlled trial of granulocyte colony-stimulating factor for the treatment of severe sepsis due to melioidosis in Thailand. Clin Infect Dis 2007; 45 (3) 308-314
  • 159 Harris P, Engler C, Norton R. Comparative in vitro susceptibility of Burkholderia pseudomallei to doripenem, ertapenem, tigecycline and moxifloxacin. Int J Antimicrob Agents 2011; 37 (6) 547-549
  • 160 Estes DM, Dow SW, Schweizer HP, Torres AG. Present and future therapeutic strategies for melioidosis and glanders. Expert Rev Anti Infect Ther 2010; 8 (3) 325-338
  • 161 Sarkar-Tyson M, Atkins HS. Antimicrobials for bacterial bioterrorism agents. Future Microbiol 2011; 6 (6) 667-676
  • 162 Schweizer HP. When it comes to drug discovery not all Gram-negative bacterial biodefence pathogens are created equal: Burkholderia pseudomallei is different. Microb Biotechnol 2012; 5 (5) 581-583
  • 163 Peacock SJ, Limmathurotsakul D, Lubell Y , et al. Melioidosis vaccines: a systematic review and appraisal of the potential to exploit biodefense vaccines for public health purposes. PLoS Negl Trop Dis 2012; 6 (1) 1488
  • 164 Choh LC, Ong GH, Vellasamy KM , et al. Burkholderia vaccines: are we moving forward?. Front Cell Infect Microbiol 2013; 3: 5