Klin Padiatr 2015; 227(03): 123-130
DOI: 10.1055/s-0034-1398628
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Bortezomib Treatment can Overcome Glucocorticoid Resistance in Childhood B-cell Precursor Acute Lymphoblastic Leukemia Cell Lines

Bortezomib moduliert die Glukokortikoidresistenz in B-Vorläufer-Zelllinien der akuten lymphoblastischen Leukämie
S. Junk
1   Institute of Human Genetics, Hannover Medical School, Hannover, Germany
,
G. Cario
2   Department of Pediatrics, Christian-Albrechts-University of Kiel, University Medical Center Schleswig-Holstein, Kiel, Germany
,
N. Wittner
1   Institute of Human Genetics, Hannover Medical School, Hannover, Germany
,
M. Stanulla
3   Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
,
R. Scherer
4   Institute for Biometry, Hannover Medical School, Hannover, Germany
,
B. Schlegelberger
1   Institute of Human Genetics, Hannover Medical School, Hannover, Germany
,
M. Schrappe
2   Department of Pediatrics, Christian-Albrechts-University of Kiel, University Medical Center Schleswig-Holstein, Kiel, Germany
,
N. von Neuhoff
1   Institute of Human Genetics, Hannover Medical School, Hannover, Germany
,
M. Lauten
5   Department of Pediatrics, University of Lübeck, University Medical Center Schleswig-Holstein, Lübeck, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
18 May 2015 (online)

Abstract

Background: The response to initial glucocorticoid (gc) treatment is a reliable stratification factor in childhood acute lymphoblastic leukemia (ALL) and may predict the response to multi-agent chemotherapy. In a former study we detected that the valosin-containing protein (VCP, cdc48), a member of the ubiquitin proteasome degradation system (UPS), is altered in gc-resistant leukemic cells suggesting that the associated pathways might be involved in chemotherapy resistance in childhood ALL.

Methods: Human B-cell precursor leukemia cell lines, gc-resistant MHH-cALL-2 and gc-sensitive MHH-cALL-3, were treated with prednisolone and various concentrations of bortezomib. Viability and apoptosis rates were determined.

Results: Both cell lines showed a dose-dependent increase in caspase activity after bortezomib single treatment. The gc-sensitive cells showed an additive effect after combined treatment with prednisolone and bortezomib. In contrast, both cell lines showed a reduced viability and enhanced propidium iodide positivity after combined treatment as determined by flow cytometry. Western blot analyses of poly-(ADP-ribose) polymerase 1 (PARP-1) suggested that combined treatment promote necrotic cleavage of PARP-1 in gc-resistant cells. Furthermore, after prednisolone treatment the UPS associated proteins VCP and NFκB-inhibitor IκBα were differentially modulated in gc-resistant cells.

Conclusions: The proteasome inhibitor bortezomib seems to sensitize gc-resistant childhood ALL cells for prednisolone-induced cell death.

Zusammenfassung

Hintergrund: Die frühe Sensibilität gegenüber Glukokortikoiden (GC) kann bei Kindern mit akuter lymphoblastischer Leukämie (ALL) die In-vivo-Sensibilität gegenüber Chemotherapie vorhersagen und dient daher als früher Stratifizierungsmarker bei der Behandlung von Kindern mit ALL. In einer früheren Studie konnten wir zeigen, dass die Expression des Valosin-containing-protein (VCP, cdc48), ein Protein des Ubiquitin-Proteasom-Systems, bei GC-resistenten ALL-Zellen verändert ist. Wir folgerten, dass eine Veränderung des nachgeschalteten Signalweges für die Chemotherapieresistenz bei Kindern mit ALL mit verantwortlich sein könnte.

Methode: Wir haben humane Zelllinien einer B-Vorläuferzell-ALL, die GC-resistente MHH-cALL-2 und die GC-sensible MHH-cALL-3, mit Prednisolon und unterschiedlichen Konzentrationen von Bortezomib, einem Inhibitor des Ubiquitin-Proteasom-Signalwegs (UPS), behandelt und anschließend die Vitalität der ALL-Zellen gemessen.

Ergebnisse: Beide Zelllinien zeigten einen dosisabhängigen Anstieg der Caspaseaktivität nach Bortezomib Monotherapie. GC-sensible Zellen zeigten darüber hinaus eine verstärkte Caspase-Aktivität bei der kombinierten Behandlung mit Bortezomib und Prednisolon. Im Gegensatz dazu zeigten beide Zelllinien eine verminderte Vitalität und eine verstärkte Propidiumiodid-Positivität nach kombinierter Behandlung mit Bortezomib und Prednisolon in der Durchflusszytometrie. Western-Blot-Analysen. von Poly-(ADP-ribose) Polymerase-1 (PARP-1) lassen vermuten, dass die kombinierte Behandlung mit Prednisolon und Bortezomib die nekrotische Spaltung von PARP-1 in GC-resistenten Zellen fördern. Darüberhinaus werden nach Gabe von Prednisolon das UPS-assoziierte VCP und der NFκB-Inhibitor IκBα in den gc-resistenten Zellen differentiell moduliert.

Schlussfolgerung: Der Proteasominhibitor Bortezomib scheint GC-resistente ALL-Zellen für den Prednisolon-induzierten Zelltod zu sensibilisieren.

 
  • References

  • 1 Abrams MT, Robertson NM, Yoon K et al. Inhibition of glucocorticoid-induced apoptosis by targeting the major splice variants of BIM mRNA with small interfering RNA and short hairpin RNA. J Biol Chem 2004; 279: 55809-55817
  • 2 Adams J. The development of proteasome inhibitors as anticancer drugs. Cancer Cell 2004; 5: 417-421
  • 3 Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clinical science 1998; 94: 557-572
  • 4 Barnes PJ, Adcock I. Anti-inflammatory actions of steroids: molecular mechanisms. Trends in pharmacological sciences 1993; 14: 436-441
  • 5 Barnes PJ, Karin M. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066-1071
  • 6 Bastian L, Hof J, Pfau M et al. Synergistic activity of bortezomib and HDACi in preclinical models of B-cell precursor acute lymphoblastic leukemia via modulation of p53, PI3K/AKT, and NF-kappaB. Clin Cancer Res 2013; 19: 1445-1457
  • 7 Bonapace L, Bornhauser BC, Schmitz M et al. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest 2010; 120: 1310-1323
  • 8 Buttgereit F, Wehling M, Burmester GR. A new hypothesis of modular glucocorticoid actions: steroid treatment of rheumatic diseases revisited. Arthritis and rheumatism 1998; 41: 761-767
  • 9 Cario G, Stanulla M, Fine BM et al. Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood 2005; 105: 821-826
  • 10 Chen ZJ, Parent L, Maniatis T. Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 1996; 84: 853-862
  • 11 Dai RM, Chen E, Longo DL et al. Involvement of valosin-containing protein, an ATPase Co-purified with IkappaBalpha and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalpha. J Biol Chem 1998; 273: 3562-3573
  • 12 DiDonato J, Mercurio F, Rosette C et al. Mapping of the inducible IkappaB phosphorylation sites that signal its ubiquitination and degradation. Molecular and cellular biology 1996; 16: 1295-1304
  • 13 Flotho C, Coustan-Smith E, Pei D et al. Genes contributing to minimal residual disease in childhood acute lymphoblastic leukemia: prognostic significance of CASP8AP2. Blood 2006; 108: 1050-1057
  • 14 Gobeil S, Boucher CC, Nadeau D et al. Characterization of the necrotic cleavage of poly(ADP-ribose) polymerase (PARP-1): implication of lysosomal proteases. Cell Death Differ 2001; 8: 588-594
  • 15 Holleman A, Cheok MH, den Boer ML et al. Gene-expression patterns in drug-resistant acute lymphoblastic leukemia cells and response to treatment. N Engl J Med 2004; 351: 533-542
  • 16 Horton TM, Gannavarapu A, Blaney SM et al. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol 2006; 58: 13-23
  • 17 Horton TM, Pati D, Plon SE et al. A phase 1 study of the proteasome inhibitor bortezomib in pediatric patients with refractory leukemia: a Children’s Oncology Group study. Clin Cancer Res 2007; 13: 1516-1522
  • 18 Jones CL, Bhatla T, Blum R et al. Loss of TBL1XR1 Disrupts Glucocorticoid Receptor Recruitment to Chromatin and Results in Glucocorticoid Resistance in a B-Lymphoblastic Leukemia Model. J Biol Chem 2014; 289: 20502-20515
  • 19 Kofler R. The molecular basis of glucocorticoid-induced apoptosis of lymphoblastic leukemia cells. Histochem Cell Biol 2000; 114: 1-7
  • 20 Kordes U, Krappmann D, Heissmeyer V et al. Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 2000; 14: 399-402
  • 21 Lambrou GI, Vlahopoulos S, Papathanasiou C et al. Prednisolone exerts late mitogenic and biphasic effects on resistant acute lymphoblastic leukemia cells: Relation to early gene expression. Leuk Res 2009; 33: 1684-1695
  • 22 Lauten M, Moricke A, Beier R et al. Prediction of outcome by early bone marrow response in childhood acute lymphoblastic leukemia treated in the ALL-BFM 95 trial: differential effects in precursor B-cell and T-cell leukemia. Haematologica 2012; 97: 1048-1056
  • 23 Lauten M, Schrauder A, Kardinal C et al. Unsupervised proteome analysis of human leukaemia cells identifies the Valosin-containing protein as a putative marker for glucocorticoid resistance. Leukemia 2006; 20: 820-826
  • 24 Lauten M, Stanulla M, Zimmermann M et al. Clinical outcome of patients with childhood acute lymphoblastic leukaemia and an initial leukaemic blood blast count of less than 1000 per microliter. Klin Padiatr 2001; 213: 169-174
  • 25 Mateos MV, Richardson PG, Schlag R et al. Bortezomib plus melphalan and prednisone compared with melphalan and prednisone in previously untreated multiple myeloma: updated follow-up and impact of subsequent therapy in the phase III VISTA trial. J Clin Oncol 2010; 28: 2259-2266
  • 26 Messinger Y, Gaynon P, Raetz E et al. Phase I study of bortezomib combined with chemotherapy in children with relapsed childhood acute lymphoblastic leukemia (ALL): a report from the therapeutic advances in childhood leukemia (TACL) consortium. Pediatr Blood Cancer 2010; 55: 254-259
  • 27 Messinger YH, Gaynon PS, Sposto R et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances in Childhood Leukemia & Lymphoma (TACL) Study. Blood 2012; 120: 285-290
  • 28 Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18: 6853-6866
  • 29 Ploner C, Rainer J, Lobenwein S et al. Repression of the BH3-only molecule PMAIP1/Noxa impairs glucocorticoid sensitivity of acute lymphoblastic leukemia cells. Apoptosis 2009; 14: 821-828
  • 30 Ploner C, Schmidt S, Presul E et al. Glucocorticoid-induced apoptosis and glucocorticoid resistance in acute lymphoblastic leukemia. J Steroid Biochem Mol Biol 2005; 93: 153-160
  • 31 Pui CH, Evans WE. Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166-178
  • 32 San Miguel JF, Schlag R, Khuageva NK et al. Bortezomib plus melphalan and prednisone for initial treatment of multiple myeloma. N Engl J Med 2008; 359: 906-917
  • 33 Sanda T, Li X, Gutierrez A et al. Interconnecting molecular pathways in the pathogenesis and drug sensitivity of T-cell acute lymphoblastic leukemia. Blood 2010; 115: 1735-1745
  • 34 Schrappe M. Evolution of BFM trials for childhood ALL. Ann Hematol 2004; 83 (Suppl. 01) S121-S123
  • 35 Soligo D, Servida F, Delia D et al. The apoptogenic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI. Br J Haematol 2001; 113: 126-135
  • 36 Wojcik C. Regulation of apoptosis by the ubiquitin and proteasome pathway. J Cell Mol Med 2002; 6: 25-48