Rofo 2015; 187(05): 372-379
DOI: 10.1055/s-0034-1398850
Heart
© Georg Thieme Verlag KG Stuttgart · New York

Impact of Hybrid Iterative Reconstruction on Agatston Coronary Artery Calcium Scores in Comparison to Filtered Back Projection in Native Cardiac CT

Einfluss der hybriden iterativen Rekonstruktion bei der nativen CT des Herzens auf die Agatston-Kalziumscores der Koronararterien
V. C. Obmann
1   University Institute for Diagnostic, Interventional and Pediatric Radiology, Inselspital – University Hospital Bern, Switzerland
,
T. Klink
2   Institute of Diagnostic and Interventional Radiology, University of Würzburg, Germany
,
J. T. Heverhagen
1   University Institute for Diagnostic, Interventional and Pediatric Radiology, Inselspital – University Hospital Bern, Switzerland
,
A. Stork
3   Röntgeninstitut Düsseldorf, Düsseldorf, Germany
,
A. Laqmani
4   Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
G. Adam
4   Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
,
P. G. C. Begemann
3   Röntgeninstitut Düsseldorf, Düsseldorf, Germany
› Author Affiliations
Further Information

Publication History

15 September 2014

08 December 2014

Publication Date:
21 April 2015 (online)

Abstract

Purpose: To investigate whether the effects of hybrid iterative reconstruction (HIR) on coronary artery calcium (CAC) measurements using the Agatston score lead to changes in assignment of patients to cardiovascular risk groups compared to filtered back projection (FBP).

Materials and Methods: 68 patients (mean age 61.5 years; 48 male; 20 female) underwent prospectively ECG-gated, non-enhanced, cardiac 256-MSCT for coronary calcium scoring. Scanning parameters were as follows: Tube voltage, 120 kV; Mean tube current time-product 63.67 mAs (50 – 150 mAs); collimation, 2 × 128 × 0.625 mm. Images were reconstructed with FBP and with HIR at all levels (L1 to L7). Two independent readers measured Agatston scores of all reconstructions and assigned patients to cardiovascular risk groups. Scores of HIR and FBP reconstructions were correlated (Spearman). Interobserver agreement and variability was assessed with ĸ-statistics and Bland-Altmann-Plots.

Results: Agatston scores of HIR reconstructions were closely correlated with FBP reconstructions (L1, R = 0.9996; L2, R = 0.9995; L3, R = 0.9991; L4, R = 0.986; L5, R = 0.9986; L6, R = 0.9987; and L7, R = 0.9986). In comparison to FBP, HIR led to reduced Agatston scores between 97 % (L1) and 87.4 % (L7) of the FBP values. Using HIR iterations L1 – L3, all patients were assigned to identical risk groups as after FPB reconstruction. In 5.4 % of patients the risk group after HIR with the maximum iteration level was different from the group after FBP reconstruction.

Conclusion: There was an excellent correlation of Agatston scores after HIR and FBP with identical risk group assignment at levels 1 - 3 for all patients. Hence it appears that the application of HIR in routine calcium scoring does not entail any disadvantages. Thus, future studies are needed to demonstrate whether HIR is a reliable method for reducing radiation dose in coronary calcium scoring.

Key Points:

• Agatston-Scores showed excellent correlation between HIR and FBP.

• The higher the HIR Level, the more Agatston scores deviated to lower values.

• No change in risk group assignment using Level 1 – 3.

• Change in risk group assignment when using HIR compared to FBP in 1.5 % (Level 4), 5.4 % (Level 5 – 7).

Citation Format:

• Obmann VC, Klink T, Heverhagen JT et al. Impact of Hybrid Iterative Reconstruction on Agatston Coronary Artery Calcium Scores in Comparison to Filtered Back Projection in Native Cardiac CT. Fortschr Röntgenstr 2015; 187: 372 – 379

Zusammenfassung

Ziel: Ziel dieser Studie war es zu prüfen, ob die Erfassung des Agatston-Scores durch hybride iterative Rekonstruktion (HIR) gegenüber der gefilterten Rückprojektion (FBP) zu einer Änderung der kardiovaskulären Risikogruppe führt.

Material und Methoden: 68 Patienten (mittleres Alter 61,5 Jahre; 48 Männer, 20 Frauen) erhielten eine prospektiv EKG-getriggerte native 256-MSCT des Herzens zum Kalziumscoring. Die Scanparameter waren wie folgt: Röhrenspannung 120 kV, Röhrenstromzeitprodukt im Mittel 63,67 mAs (50 – 150 mAs); Kollimation 2 × 128 × 0,625 mm. Die Rohdaten wurden mittels FBP und HIR in allen Iterationsstufen (L1 – L7) rekonstruiert. Zwei unabhängige Beobachter erfassten die Agatston-Scores der HIR- und FBP-Rekonstruktion und nahmen eine Einteilung in kardiovaskuläre Risikogruppen vor. Die Resultate wurden zwischen HIR und FBP korreliert (Spearman). Die Übereinstimmung und Variabilität zwischen den beiden Beobachtern wurde mittels ĸ-Statistik und Bland-Altmann-Plots bestimmt.

Ergebnisse: Die Agatston-Scores der HIR korrelierten gut bis exzellent mit den FBP-Rekonstruktionen (L1: R = 0,9996, L2: R = 0,9995, L3: R = 0,9991, L4: R = 0,9986, L5: R = 0,9986, L6: R = 0,9987 und L7: R = 0,9986). Im Vergleich zu FBP führte die HIR zu niedrigeren Agatston-Scores zwischen 97 % (L1) und 87,4 % (L7). Bei niedrigen Iterationsstufen (L1 – L3) wurden alle Patienten in identische Risikogruppen eingeteilt wie bei FBP. Nur bei Verwendung der höchsten HIR-Stufen änderte sich die Gruppe bei 5,4 % der Patienten gegenüber FBP.

Schlussfolgerung: Aufgrund der exzellenten Korrelation der Agatston-Scores nach FBP- und HIR-Rekonstruktion und den identischen kardiovaskuläre Risikokategorien zwischen FBP- und HIR-Level 1 – 3 bei allen Patienten, scheint der Einsatz der iterativen Rekonstruktion unter diesen Bedingungen bei Kalziumscoring nicht von Nachteil zu sein. Weitere Studien müssen zeigen, ob sich die HIR auch als zuverlässige Methode zur Dosisreduktion bei Kalziumscoring eignet.

Deutscher Artikel/German Article

 
  • References

  • 1 Agatston AS, Janowitz WR, Hildner FJ et al. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990; 15: 827-832
  • 2 Rumberger JA, Brundage BH, Rader DJ et al. Electron beam computed tomographic coronary calcium scanning: a review and guidelines for use in asymptomatic persons. Mayo Clin Proc 1999; 74: 243-252
  • 3 Mark DB, Anderson JL, Brinker JA et al. ACC/AHA/ASE/ASNC/HRS/IAC/Mended Hearts/NASCI/RSNA/SAIP/SCAI/SCCT/SCMR/SNMMI 2014 Health Policy Statement on Use of Noninvasive Cardiovascular Imaging: A Report of the American College of Cardiology Clinical Quality Committee. J Am Coll Cardiol 2014; 63: 698-721
  • 4 Becker A, Leber A, Becker C et al. Predictive value of coronary calcifications for future cardiac events in asymptomatic individuals. Am Heart J 2008; 155: 154-160
  • 5 Klass O, Walker M, Siebach A et al. Prospectively gated axial CT coronary angiography: comparison of image quality and effective radiation dose between 64- and 256-slice CT. Eur Radiol 2010; 20: 1124-1131
  • 6 Hirai N, Horiguchi J, Fujioka C et al. Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 2008; 248: 424-430
  • 7 Hou Y, Liu X, Xv S et al. Comparisons of image quality and radiation dose between iterative reconstruction and filtered back projection reconstruction algorithms in 256-MDCT coronary angiography. Am J Roentgenol 2012; 199: 588-594
  • 8 Hosch W, Stiller W, Mueller D et al. Reduction of radiation exposure and improvement of image quality with BMI-adapted prospective cardiac computed tomography and iterative reconstruction. Eur J Radiol 2012; 81: 3568-3576
  • 9 Klink T, Obmann V, Heverhagen J et al. Reducing CT radiation dose with iterative reconstruction algorithms: The influence of scan and reconstruction parameters on image quality and CTDIvol. Eur J Radiol 2014; 83: 1645-1654
  • 10 Kurata A, Dharampal A, Dedic A et al. Impact of iterative reconstruction on CT coronary calcium quantification. Eur Radiol 2013; 23: 3246-3252
  • 11 Schindler A, Vliegenthart R, Schoepf UJ et al. Iterative Image Reconstruction Techniques for CT Coronary Artery Calcium Quantification: Comparison with Traditional Filtered Back Projection in Vitro and in Vivo. Radiology 2014; 270: 387-393
  • 12 Gebhard C, Fiechter M, Fuchs TA et al. Coronary artery calcium scoring: Influence of adaptive statistical iterative reconstruction using 64-MDCT. Int J Cardiol 2013; 167: 2932-2937
  • 13 van Osch JA, Mouden M, van Dalen JA et al. Influence of iterative image reconstruction on CT-based calcium score measurements. Int J Cardiovasc Imaging 2014;
  • 14 Funama Y, Taguchi K, Utsunomiya D et al. Combination of a low-tube-voltage technique with hybrid iterative reconstruction (iDose) algorithm at coronary computed tomographic angiography. J Comput Assist Tomogr 2011; 35: 480-485
  • 15 Murazaki H, Funama Y, Hatemura M et al. Quantitative evaluation of calcium (content) in the coronary artery using hybrid iterative reconstruction (iDose) algorithm on low-dose 64-detector CT: comparison of iDose and filtered back projection. Nihon Hoshasen Gijutsu Gakkai Zasshi 2011; 67: 360-366
  • 16 Klink T, Hoffmann MH, van Stevendaal U et al. Automatic phase point determination of minimal motion reconstruction intervals with motion maps in ECG-gated CT diagnostics of coronary sclerosis. Fortschr Röntgenstr 2009; 181: 675-682
  • 17 Christner JA, Kofler JM, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection publication 103 or dual-energy scanning. AAm J Roentgenol 2010; 194: 881-889
  • 18 Jessen KA, Shrimpton PC, Geleijns J et al. Dosimetry for optimisation of patient protection in computed tomography. Appl Radiat Isot 1999; 50: 165-172
  • 19 Vliegenthart R, Oudkerk M, Hofman A et al. Coronary calcification improves cardiovascular risk prediction in the elderly. Circulation 2005; 112: 572-577
  • 20 McClelland RL, Chung H, Detrano R et al. Distribution of coronary artery calcium by race, gender, and age: results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2006; 113: 30-37
  • 21 Renker M, Nance Jr JW, Schoepf UJ et al. Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology 2011; 260: 390-399
  • 22 Becker CR, Kleffel T, Crispin A et al. Coronary artery calcium measurement: agreement of multirow detector and electron beam CT. Am J Roentgenol 2001; 176: 1295-1298
  • 23 Greenland P, LaBree L, Azen SP et al. Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 2004; 291: 210-215
  • 24 Utsunomiya D, Weigold WG, Weissman G et al. Effect of hybrid iterative reconstruction technique on quantitative and qualitative image analysis at 256-slice prospective gating cardiac CT. Eur Radiol 2012; 22: 1287-1294
  • 25 Takx RA, Willemink MJ, Nathoe HM et al. The effect of iterative reconstruction on quantitative computed tomography assessment of coronary plaque composition. Int J Cardiovasc Imaging 2014; 30: 155-163
  • 26 McCollough CH, Ulzheimer S, Halliburton SS et al. Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT. Radiology 2007; 243: 527-538
  • 27 Willemink MJ, de Jong PA, Leiner T et al. Iterative reconstruction techniques for computed tomography Part 1: technical principles. Eur Radiol 2013; 23: 1623-1631
  • 28 Noel PB, Fingerle AA, Renger B et al. Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT. Am J Roentgenol 2011; 197: 1404-1409
  • 29 Budoff MJ, Achenbach S, Blumenthal RS et al. Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation 2006; 114: 1761-1791
  • 30 Palorini F, Origgi D, Granata C et al. Adult exposures from MDCT including multiphase studies: first Italian nationwide survey. Eur Radiol 2014; 24: 469-483