Rofo 2015; 187(09): 760-770
DOI: 10.1055/s-0034-1399546
Review
© Georg Thieme Verlag KG Stuttgart · New York

T1, T2 Mapping and Extracellular Volume Fraction (ECV): Application, Value and Further Perspectives in Myocardial Inflammation and Cardiomyopathies

Anwendung, Nutzen und zukünftige Perspektive des T1- und T2-Mapping sowie der extrazellulären Volumenfraktion (ECV) bei myokardialer Inflammation und Kardiomyopathien
F. C. Roller
,
S. Harth
,
C. Schneider
,
G. A. Krombach
Further Information

Publication History

08 January 2015

26 March 2015

Publication Date:
22 June 2015 (online)

Abstract

Cardiac magnetic resonance imaging (CMRI) is a versatile diagnostic tool. One of its main advantages is the possibility of tissue characterization. T1-weighted images for scar and T2-weighted images for edema visualization are key methods for tissue characterization. Otherwise these sequences are strongly limited for the detection of diffuse myocardial pathologies. Recently, rapid technical innovations have generated new techniques. T1, T2 mapping and evaluation of the extracellular volume fraction (ECV) allow quantification of diffuse myocardial pathologies and showed great potential in the visualization of fibrosis, edema, amyloid, iron overload and lipid. In the future these techniques might enable the detection of early cardiac involvement, even act as a prognosticator. Moreover, therapy monitoring and follow-up might be possible due to versatile parameter quantification with these new techniques.

Key points:

• CMR allows for tissue characterization via T1- and T2-weighted sequences.

• In cases of diffuse, global myocardial pathologies, correct image interpretation with traditional CMR sequences might be difficult.

• T1, T2 mapping and ECV can quantify diffuse, global myocardial pathologies.

• Alterations of myocardial T1 and T2 relaxation times occur in various myocardial diseases (e. g. acute myocarditis).

• In the future mapping might act as a prognosticator or therapy monitoring tool.

Citation Format:

• Roller FC, Harth S, Schneider C et al. T1, T2 Mapping and Extracellular Volume Fraction (ECV): Application, Value and Further Perspectives in Myocardial Inflammation and Cardiomyopathies. Fortschr Röntgenstr 2015; 187: 760 – 770

Zusammenfassung

Die kardiale Magnetresonanztomografie (MRT) ist eine sehr vielseitig einsetzbare diagnostische Modalität. Einer ihrer Hauptvorteile liegt in der Möglichkeit Gewebecharakterisierung zu betreiben. Bisher wurden standardmäßig vor allem T1-gewichtete Sequenzen zur Bildgebung von fokalen myokardialen Narben bzw. Schädigungen und T2-gewichtete Bilder für die Ödembildgebung genutzt. Andererseits sind diese Techniken insbesondere bei der Visualisierung von globalen myokardialen Veränderungen technisch bedingt stark limitiert. Aktuell entwickelte Techniken wie das T1- und das T2-Mapping oder auch die Bestimmung des „Extrazellulären Volumens“ ermöglichen uns hingegen eine Quantifizierung von globalen myokardialen Veränderungen und Pathologien wie bereits für Fibrose und Ödem aber auch für Amyloidose, Fett- bzw. Eisenspeichererkrankungen gezeigt werden konnte. Aufgrund der vielversprechenden Ergebnisse, ihrer Robustheit sowie einer Quantifizierung von T1- und T2-Zeiten erlauben uns diese Techniken in Zukunft eine Detektion von frühen Krankheitsstadien oder eignen sich darüber hinaus vielleicht auch für eine Therapiemonitoring und eine Prognoseabschätzung im Rahmen von Verlaufskontrollen.

Kernaussagen:

• Die kardiale MRT ermöglicht eine Gewebecharakterisierung mittels T1- und T2-gewichteten Sequenzen.

• Bei globalen bzw. diffusen myokardialen Veränderungen sind diese Sequenzen jedoch limitiert und schränken die korrekte Bildinterpretation ein.

• Im Gegensatz dazu ermöglichen T1-, T2-Mapping und ECV eine Quantifizierung globaler myokardialer Veränderungen.

• Bei sehr vielen unterschiedlichen Erkrankungen konnten Veränderungen von T1 und T2 Relaxationszeiten gezeigt werden (z.B. Myokarditis)

• Zukünftig könnte Mapping auch in der Prognose und im Therapiemonitoring eine bedeutende Rolle zukommen

 
  • References

  • 1 Achenbach S, Barkhausen J, Beer M et al. Consensus recommendations of the German Radiology Society (DRG), the German Cardiac Society (DGK) and the German Society for Pediatric Cardiology (DGPK) on the use of cardiac imaging with computed tomography and magnetic resonance imaging. Fortschr Röntgenstr 2012; 184: 345-368
  • 2 Kellman P, Arai AE, Xue H. T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson 2013; 15: 56
  • 3 Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson 2014; 16: 2
  • 4 Dass S, Suttie JJ, Piechnik SK et al. Myocardial tissue characterization using magnetic resonance non contrast T1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging 2012; 6: 726-733
  • 5 Ferreira VM, Piechnik SK, Dall’Armellina E et al. Non contrast T1 mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012; 14: 42
  • 6 Karamitsos TD, Piechnik SK, Banypersad SM et al. Non-contrast T1 Mapping for the Diagnosis of Cardiac Amyloidosis. J Am Coll Cardiol Img 2013; 6: 488-497
  • 7 Sado DM, White SK, Piechnik SK et al. Identification and assessment of Anderson-Fabry Disease by Cardiovascular Magnetic Resonance Non-contrast myocardial T1 mapping clinical perspective. Circ Cardiovasc Imaging 2013; 6: 392-398
  • 8 Pedersen SF, Thrys SA, Robich MP et al. Assessment of intramyocardial hemorrhage by T1-weighted cardiovascular magnetic resonance in reperfused myocardial infarction. J Cardiovasc Magn Reson 2012; 14: 59
  • 9 Iles L, Pfluger H, Phrommintikul A et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 2008; 52: 1574-1580
  • 10 Chan W, Duffy SJ, White DA et al. Acute left ventricular remodeling following myocardial infarction: coupling of regional healing with remote extracellular matrix expansion. J Am Coll Cardiol Img 2012; 5: 884-893
  • 11 Ng AC, Auger D, Delgado V et al. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast-enhanced T mapping and subclinical myocardial dysfunction in diabetic patients: a pilot study. Circ Cardiovasc Imaging 2012; 5: 51-59
  • 12 Kellman P, Wilson JR, Xue H et al. Extracellular volume fraction mapping in the myocardium, part 1: evaluation of an automated method. J Cardiovasc Magn Reson 2012; 14: 63
  • 13 White SK, Sado DM, Fontana M et al. T1 Mapping for Myocardial Extracellular Volume measurement by CMR: Bolus Only Versus Primed Infusion Technique. J Am Coll Cardiol Img 2013; 6: 955-962
  • 14 Schelbert EB, Testa SM, Meier CG et al. Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. J Cardiovasc Magn Reson 2011; 4: 13-16
  • 15 Wong TC, Piehler K, Meier CG et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 2012; 126: 1206-1216
  • 16 Thavendiranathan P, Walls M, Giri S et al. Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 Mapping. Circ Cardiovasc Imaging 2012; 5: 102-110
  • 17 Usman AA, Taimen K, Wasielewski M. Resonance T2 Mapping in the monitoring and follow-up of acute cardiac transplant rejection: A Pilot Study. Circ Cardiovasc Imaging 2012; 6: 782-790
  • 18 Messroghli DR, Greiser A, Frohlich M et al. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007; 26: 1081-1086
  • 19 Doolan A, Langlois N, Semsarian C. Causes of sudden cardiac death in young Australians. Med J Aust 2004; 180: 110-112
  • 20 Felker GM, Thompson RE, Hare JM et al. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 2000; 342: 1077-1084
  • 21 Lauer B, Niederau C, Kuhl U et al. Cardiac troponin T in patients with clinically suspected myocarditis. J Am Coll Cardiol 1997; 30: 1354-1359
  • 22 Friedrich MG, Strohm O, SchulzMenger J et al. Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation 1998; 97: 1802-1809
  • 23 Mahrholdt H, Goedecke C, Wagner A et al. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 2004; 109: 1250-1258
  • 24 Abdel-Aty H, Boye P, Zagrosek A et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 2005; 45: 1815-1822
  • 25 Cooper LT, Baughman KL, Feldman AM et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol 2007; 50: 1914-1931
  • 26 Friedrich SG, Sechtem U, Schulz-Menger J et al. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol 2009; 53 (17) 1475-1487
  • 27 Luetkens JA, Doerner J, Thomas DK et al. Acute myocarditis: multiparametric cardiac MR imaging. Radiology 2014; 273: 383-392
  • 28 Ferreira VM, Piechnik SK, Dall’Aremellina D et al. T1 Mapping for the Diagnosis of Acute Myocarditis Using CMR: Comparison to T2-Weighted and Late Gadolinium Enhanced Imaging. J Am Coll Cardiol Img 2013; 6: 1048-1058
  • 29 Hinojar R, Foote L, Arroyo Ucar E et al. Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR. J Am Coll Cardiol Img 2015; 8: 37-46
  • 30 Giri S, Chung YC, Merchant A et al. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 2009; 11: 56
  • 31 Radunski UK, Lund GK, Stehning C et al. CMR in patients with severe myocarditis: diagnostic value of quantitative tissue markers including extracellular volume imaging. J Am Coll Cardiol Img 2014; 7: 667-675
  • 32 Bos JM, Towbin JA, Ackermann MJ. Diagnostic, prognostic, and therapeutic implications of genetic testing for hypertrophic cardiomyopathy. J Am Coll Cardiol 2009; 54: 201-211
  • 33 Seidman JG, Seidman C. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 2001; 104: 557-567
  • 34 Maron BJ, Gardin JM, Fleck JM et al. Prevalence of hypertrophic cardiomyopathy in general population of young adults. Echocardiographic analysis of 4111 subjects in the cardia study. Coronary artery risk development in (young) adults. Circulation 1995; 92: 785-789
  • 35 Decker JA, Rosano JW, Smith EO et al. Risk factors and mode of death in isolated hypertrophic cardiomyopathy in children. J Am Coll Cardiol 2009; 54: 250-254
  • 36 Lu M, Zhao S, Yin G et al. T1 mapping for detection of left ventricular myocardial fibrosis in hypertrophic cardiomyopathy: A preliminary study. Eur J Radiol 2013; 82: 225-231
  • 37 Kwon DH, Smedira NG, Rodriguez ER et al. Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy: correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol 2009; 54: 242-249
  • 38 Prinz C, van Buuren F, Faber L et al. Myocardial fibrosis is associated with biventricular dysfunction in patients with hypertrophic cardiomyopathy. Echocardiography 2012; 29: 438-444
  • 39 Bongioanni S, Spirito P, Masi AS et al. Extensive myocardial fibrosis in a patient with hypertrophic cardiomyopathy and ventricular tachycardia without traditional high-risk features. Circ Cardiovasc Imaging 2009; 2: 349-350
  • 40 O’Hanlon R, Grasso A, Roughton M et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 2010; 56: 867-874
  • 41 Hoy CJLB, Coehlo-Filho H, Lakdawala NK et al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 2010; 363: 552-563
  • 42 Bruder O, Wagner A, Jensen CJ et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2010; 56: 875-887
  • 43 Kim RJ, Judd RM. Gadolinium-enhanced magnetic resonance imaging in hypertrophic cardiomyopathy: in vivo imaging of the pathologic substrate for premature cardiac death?. J Am Coll Cardiol 2003; 41: 1568-1572
  • 44 Varnava AM, Elliott PM, Sharma S et al. Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart 2000; 84: 476-482
  • 45 Iles L, Pfluger H, Phrommintikul A et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 2008; 52: 1574-1580
  • 46 Sibley CT, Noureldin RA, Gai N et al. T1 Mapping in Cardiomyopathy at Cardiac MR: Comparison with Endomyocardial Biopsy. Radiology 2012; 265: 724-732
  • 47 Lu M, Zhao S, Yin G et al. T1 mapping for detection of left ventricular myocardial fibrosis in hypertrophic cardiomyopathy: A preliminary study. Eur J Radiol 2013; 82: 225-231
  • 48 Fang L, Beale A, Ellims AH et al. Associations Between Fibrocytes and Postcontrast Myocardial T1 Times in Hypertrophic Cardiomyopathy. J Am Heart Assoc 2013; 2: e000270
  • 49 Watkins H, Ashrafian H, Redwood C. Inherited Cardiomyopathies. N Engl J Med 2011; 364: 1643-1656
  • 50 Towbin JA, Bowles NE. The failing heart. Nature 2002; 415: 227-233
  • 51 Hoe CJ, Seidman CE. A contemporary approach to hypertrophic cardiomyopathy. Circulation 2006; 113: e858-e862
  • 52 Assomull RG, Prasad SK, Lyne J et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 2006; 48: 1977-1985
  • 53 Puntmann VO, Voigt T, Chen Z et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. J Am Coll Cardiol Img 2013; 6: 475-484
  • 54 Kellman P, Wilson JR, Xue H et al. Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 2012; 14: 64
  • 55 Nishii T, Kono AK, Shigeru M et al. Cardiovascular magnetic resonance T2 mapping can detect myocardial edema in idiopathic dilated cardiomyopathy. Int J Cardiovasc Imaging 2014; 30 (Suppl. 01) 65-72
  • 56 Banypersad SM, Moon JC, Whelan C et al. Updates in cardiac amyloidosis: a review. J Am Heart Assoc 2012; 1: e000364
  • 57 Selvanayagam JB, Hawkins PN, Paul B et al. Evaluation and management of the cardiac amyloidosis. J Am Coll Cardiol 2007; 50: 2101-2110
  • 58 Falk RH. Cardiac amyloidosis: a treatable disease, often overlooked. Circulation 2011; 124: 1079-1085
  • 59 Austin BA, Tang WH, Rodriguez ER et al. Delayed hyper-enhancementmagnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. J Am Coll Cardiol Img 2009; 2: 1369-1377
  • 60 Maceira AM, Joshi J, Prasad SK et al. Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 2005; 111: 186-193
  • 61 Maceira AM, Prasad SK, Hawkins PN et al. Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson 2008; 10: 54
  • 62 Syed IS, Glockner JF, Feng D et al. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. J Am Coll Cardiol Img 2010; 3: 155-164
  • 63 Fontana M, Banypersad SM, Treibel TA et al. Native T1 Mapping in Transthyretin Amyloidosis. J Am Coll Cardiol Img 2014; 7: 157-165
  • 64 MacDermot KD, Holmes A, Miners AH. Anderson-Fabry disease: clinicalmanifestations and impact of disease in a cohort of 98 hemizygous males. J Med Genet 2001; 38: 750e60
  • 65 Hoey ET, Neil-Gallagher E. Utility of gadolinium enhancedcardiovascular MRI to differentiate Fabry’s disease from other causes of hypertrophic cardiomyopathy. Postgrad Med J 2012; 88 (1046) 731-732
  • 66 Eng CM, Guffon N, Wilcox WR et al. Safety and efficacy of recombinant human alpha-galactosidase A-replacement therapy in Fabry’s disease. N Engl J Med 2001; 345: 9-16
  • 67 Messalli G, Imbriaco M, Avitabile G et al. Role of cardiac MRI in evaluating patients with Anderson-Fabry disease: assessing cardiac effects of long-term enzyme replacement therapy. Radiol Med 2012; 117: 19-28
  • 68 Moon JC, Sachdev B, Elkington AG et al. Gadolinium enhanced cardiovascularmagnetic resonance in Anderson-Fabry disease: evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 2003; 24: 2151e5
  • 69 Ries M, Clarke JT, Whybra C et al. Enzyme-replacement therapy with agalisade alfa in children with Fabry disease. Pediatrics 2006; 118: 924e32
  • 70 Collin C, Briet M, Tran TC et al. Long-term changes in arterial structure and function and left ventricular geometry after enzyme replacement therapy in patients affected with Fabry disease. Eur J Prev Cardiol 2012; 19: 43-54
  • 71 Thompson RB, Chow K, Khan A et al. T₁ mapping with cardiovascular MRI is highly sensitive for Fabry disease independent of hypertrophy and sex. Circ Cardiovasc Imaging 2013; 6: 637-645
  • 72 Sado DM, Flett AS, Banypersad SM et al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 2012; 98: 1436-1441
  • 73 Wittstein IS, Thiemann DR, Lima JA et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 2005; 352: 539-548
  • 74 Abdel-Aty H, Cocker M, Friedrich MG. Myocardial edema is a feature of Tako-Tsubo cardiomyopathy and is related to the severity of systolic dysfunction: insights from T2-weighted cardiovascular magnetic resonance. Int J Cardiol 2009; 132: 291-293
  • 75 Aus dem Siepen F, Buss SJ, Messroghli D et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 2015; 16: 210-216