Planta Med 2015; 81(12/13): 975-994
DOI: 10.1055/s-0035-1546131
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Natural Products for the Treatment of Type 2 Diabetes Mellitus[*]

José Luis Ríos
1   Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, Burjassot, Valencia, Spain
,
Flavio Francini
2   Centro de Endocrinologia Experimental y Aplicada, Centro Científico Tecnológico, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
,
Guillermo R. Schinella
3   Cátedra de Farmacología Básica, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
4   Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, La Plata, Argentina
› Author Affiliations
Further Information

Publication History

received 12 February 2015
revised 28 April 2015

accepted 03 May 2015

Publication Date:
01 July 2015 (online)

Abstract

Type 2 diabetes mellitus is a metabolic disease characterized by persistent hyperglycemia. High blood sugar can produce long-term complications such as cardiovascular and renal disorders, retinopathy, and poor blood flow. Its development can be prevented or delayed in people with impaired glucose tolerance by implementing lifestyle changes or the use of therapeutic agents. Some of these drugs have been obtained from plants or have a microbial origin, such as galegine isolated from Galega officinalis, which has a great similarity to the antidiabetic drug metformin. Picnogenol, acarbose, miglitol, and voglibose are other antidiabetic products of natural origin. This review compiles the principal articles on medicinal plants used for treating diabetes and its comorbidities, as well as mechanisms of natural products as antidiabetic agents. Inhibition of α-glucosidase and α-amylase, effects on glucose uptake and glucose transporters, modification of mechanisms mediated by the peroxisome proliferator-activated receptor, inhibition of protein tyrosine phosphatase 1B activity, modification of gene expression, and activities of hormones involved in glucose homeostasis such as adiponectin, resistin, and incretin, and reduction of oxidative stress are some of the mechanisms in which natural products are involved. We also review the most relevant clinical trials performed with medicinal plants and natural products such as aloe, banaba, bitter melon, caper, cinnamon, cocoa, coffee, fenugreek, garlic, guava, gymnema, nettle, sage, soybean, green and black tea, turmeric, walnut, and yerba mate. Compounds of high interest as potential antidiabetics are: fukugetin, palmatine, berberine, honokiol, amorfrutins, trigonelline, gymnemic acids, gurmarin, and phlorizin.

* Dedicated to Professor Dr. Dr. h. c. mult. Adolf Nahrstedt on the occasion of his 75th birthday.


 
  • References

  • 1 Klonoff DC, Schwartz DM. An economic analysis of interventions for diabetes. Diabetes Care 2000; 23: 390-404
  • 2 King H, Aubert RE, Herman WH. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 1998; 21: 1414-1431
  • 3 ADA, American Diabetes Association. Standards of medical care in diabetes – 2014. Diabetes Care 2014; 37: S14-S80
  • 4 ADA, American Diabetes Association. Clinical practice recommendations 2007. Diabetes Care 2007; 30: S3
  • 5 LADA, Latin American Diabetes Association. Guías ALAD de diagnóstico control y tratamiento de la diabetes mellitus tipo 2. Ver Asoc Latinoam Diabetes 2006; 14: 3-4
  • 6 Fall CH. Non-industrialised countries and affluence. Br Med Bull 2001; 60: 33-50
  • 7 Gagliardino JJ, Martella A, Etchegoyen GS, Caporale JE, Guidi ML, Olivera EM, González C. Hospitalization and re-hospitalization of people with and without diabetes in La Plata, Argentina: comparison of their clinical characteristics and costs. Diabetes Res Clin Pract 2004; 65: 51-59
  • 8 Williams R, Van Gaal L, Lucioni C. CODE-2 Advisory Board. Assessing the impact of complications on the costs of type II diabetes. Diabetologia 2002; 45: S13-S17
  • 9 CDC Diabetes Cost-effectiveness Group. Cost-effectiveness of intensive glycemic control, intensified hypertension control, and serum cholesterol level reduction for type 2 diabetes. JAMA 2002; 287: 2542-2551
  • 10 Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M, Salminen V, Uusitupa M. Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343-1350
  • 11 Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393-403
  • 12 Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M. STOP-NIDDM Trail Research Group. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet 2002; 15: 2072-2077
  • 13 DREAM (Diabetes Reduction Assessment with ramipril and rosiglitazone Medication) Trial Investigators. Gerstein HC, Yusuf S, Bosch J, Pogue J, Sheridan P, Dinccag N, Hanefeld M, Hoogwerf B, Laakso M, Mohan V, Shaw J, Zinman B, Holman RR. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 2006; 368: 1096-1105
  • 14 ADA, American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2013; 36: S67-S74
  • 15 ADA, American Diabetes Association. Clinical practice recommendations 2005. Diabetes Care 2005; 28: S1-S79
  • 16 Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-Cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52: 102-110
  • 17 Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell 2012; 148: 852-887
  • 18 Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW, Neifing JL, Ward WK, Beard JC, Palmer JP. Quantification of the relationship between insulin sensitivity and β-cell function in human subjects. Evidence for a hyperbolic function. Diabetes 1993; 42: 1663-1672
  • 19 Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A, DeFronzo RA. β-Cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. J Clin Endocrinol Metab 2005; 90: 493-500
  • 20 Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999; 104: 787-794
  • 21 Sakura H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced β-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type II diabetic patients. Diabetologia 2002; 45: 85-96
  • 22 Araki E, Oyadomari S, Mori M. Impact of endoplasmic reticulum stress pathway on pancreatic β-cells and diabetes mellitus. Exp Biol Med 2003; 228: 1213-1217
  • 23 Bedekar A, Shah K, Koffas M. Natural products for type II diabetes treatment. Adv Appl Microbiol 2010; 71: 21-73
  • 24 Perla V, Jayanty SS. Biguanide related compounds in traditional antidiabetic functional foods. Food Chem 2013; 138: 1574-1580
  • 25 Nelson-Dooley C, Della-Fera MA, Hamrick M, Baile CA. Novel treatments for obesity and osteoporosis: targeting apoptotic pathways in adipocytes. Curr Med Chem 2005; 12: 2215-2225
  • 26 Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K. α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J Agric Food Chem 2001; 49: 1948-1951
  • 27 Schafer A, Hogger P. Oligomeric procyanidins of French maritime pine bark extract (Pycnogenol) effectively inhibit α-glucosidase. Diabetes Res Clin Pract 2007; 77: 41-46
  • 28 Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI. Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 2005; 21: 756-761
  • 29 Liu X, Wei J, Tan F, Zhou S, Würthwein G, Rohdewald P. Antidiabetic effect of Pycnogenol French maritime pine bark extract in patients with diabetes type II. Life Sci 2004; 75: 2505-2513
  • 30 Liu X, Wei J, Tan F, Zhou S, Würthwein G, Rohdewald P. Pycnogenol, French maritime pine bark extract, improves endothelial function of hypertensive patients. Life Sci 2004; 74: 855-862
  • 31 Wehmeier UF. The biosynthesis and metabolism of acarbose in Actinoplanes sp. SE50/110: A progress report. Biocatal Biotransformation 2003; 21: 279-284
  • 32 Wehmeier UF, Piepersberg W. Biotechnology and molecular biology of the α-glucosidase inhibitor acarbose. Appl Microbiol Biotechnol 2004; 63: 613-625
  • 33 Matsuo T, Odaka H, Ikeda H. Effect of an intestinal disaccharidase inhibitor (AO-128) on obesity and diabetes. Am J Clin Nutr 1992; 55: 314S-317S
  • 34 Chen X, Zheng Y, Shen Y. Voglibose (Basen, AO-128), one of the most important α-glucosidase inhibitors. Curr Med Chem 2006; 13: 109-116
  • 35 Chawla R, Thakur P, Chowdhry A, Jaiswal S, Sharma A, Goel R, Sharma J, Priyadarshi SS, Kumar V, Sharma RK, Arora R. Evidence based herbal drug standardization approach in coping with challenges of holistic management of diabetes: a dreadful lifestyle disorder of 21st century. J Diabetes Metab Disord 2013; 12: 35
  • 36 Hays NP, Galassetti PR, Coker RH. Prevention and treatment of type 2 diabetes: current role of lifestyle, natural product, and pharmacological interventions. Pharmacol Ther 2008; 118: 181-191
  • 37 Nahas R, Moher M. Complementary and alternative medicine for the treatment of type 2 diabetes. Can Fam Physician 2009; 55: 591-596
  • 38 Patel DK, Kumar R, Laloo D, Hemalatha S. Diabetes mellitus: an overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac J Trop Biomed 2012; 2: 411-420
  • 39 Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012; 2: 320-330
  • 40 Chang CL, Lin Y, Bartolome AP, Chen YC, Chiu SC, Yang WC. Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. Evid Based Complement Alternat Med 2013; 2013: 378657
  • 41 El-Abhar HS, Schaalan MF. Phytotherapy in diabetes: Review on potential mechanistic perspectives. World J Diabetes 2014; 5: 176-197
  • 42 Eddouks M, Bidi A, El Bouhali B, Hajji L, Zeggwagh NA. Antidiabetic plants improving insulin sensitivity. J Pharm Pharmacol 2014; 66: 1197-1214
  • 43 Jia W, Gao W, Tang L. Antidiabetic herbal drugs officially approved in China. Phytother Res 2003; 17: 1127-1134
  • 44 Shojaii A, Dabaghian FH, Goushegir A, Fard MA. Antidiabetic plants of Iran. Acta Med Iran 2011; 49: 637-642
  • 45 Rashidi AA, Mirhashemi SM, Taghizadeh M, Sarkhail P. Iranian medicinal plants for diabetes mellitus: a systematic review. Pak J Biol Sci 2013; 16: 401-411
  • 46 Zarshenas MM, Khademian S, Moein M. Diabetes and related remedies in medieval Persian medicine. Indian J Endocrinol Metab 2014; 18: 142-149
  • 47 Ramírez G, Zavala M, Pérez J, Zamilpa A. In vitro screening of medicinal plants used in Mexico as antidiabetics with glucosidase and lipase inhibitory activities. Evid Based Complement Alternat Med 2012; 2012: 701261
  • 48 Mata R, Cristians S, Escandón-Rivera S, Juárez-Reyes K, Rivero-Cruz I. Mexican antidiabetic herbs: valuable sources of inhibitors of α-glucosidases. J Nat Prod 2013; 76: 468-483
  • 49 Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 2002; 81: 81-100
  • 50 Mukherjee PK, Maiti K, Mukherjee K, Houghton PJ. Leads from Indian medicinal plants with hypoglycemic potentials. J Ethnopharmacol 2006; 106: 1-28
  • 51 Hardy ML, Coulter I, Venuturupalli S, Roth EA, Favreau J, Morton SC, Shekelle P. Ayurvedic interventions for diabetes mellitus: a systematic review. Evid Rep Technol Assess (Summ) 2001; 41: 2p
  • 52 Zia-ur-rehman M, Mirajab K, Mushtaq A. Potential for Pakistani traditional medicinal plants to combat diabetes. J Tradit Chin Med 2014; 34: 488-490
  • 53 Kadir MF, Bin Sayeed MS, Shams T, Mia MM. Ethnobotanical survey of medicinal plants used by Bangladeshi traditional health practitioners in the management of diabetes mellitus. J Ethnopharmacol 2012; 144: 605-611
  • 54 Kabir MH, Hasan N, Rahman MM, Rahman MA, Khan JA, Hoque NT, Bhuiyan MR, Mou SM, Jahan R, Rahmatullah M. A survey of medicinal plants used by the Deb barma clan of the Tripura tribe of Moulvibazar district, Bangladesh. J Ethnobiol Ethnomed 2014; 10: 19
  • 55 Marwat SK, Rehman F, Khan EA, Khakwani AA, Ullah I, Khan KU, Khan IU. Useful ethnophytomedicinal recipes of angiosperms used against diabetes in South East Asian Countries (India, Pakistan & Sri Lanka). Pak J Pharm Sci 2014; 27: 1338-1358
  • 56 Diallo A, Traore MS, Keita SM, Balde MA, Keita A, Camara M, Van Miert S, Pieters L, Balde AM. Management of diabetes in Guinean traditional medicine: an ethnobotanical investigation in the coastal lowlands. J Ethnopharmacol 2012; 144: 353-361
  • 57 Lawag IL, Aguinaldo AM, Naheed S, Mosihuzzaman M. α-Glucosidase inhibitory activity of selected Philippine plants. J Ethnopharmacol 2012; 144: 217-219
  • 58 Katemo M, Mpiana PT, Mbala BM, Mihigo SO, Ngbolua KN, Tshibangu DS, Koyange PR. Ethnopharmacological survey of plants used against diabetes in Kisangani City (DR Congo). J Ethnopharmacol 2012; 144: 39-43
  • 59 Mootoosamy A, Mahomoodally MF. Ethnomedicinal application of native remedies used against diabetes and related complications in Mauritius. J Ethnopharmacol 2014; 151: 413-444
  • 60 Picot CM, Subratty AH, Mahomoodally MF. Inhibitory potential of five traditionally used native antidiabetic medicinal plants on α-amylase, α-glucosidase, glucose entrapment, and amylolysis kinetics in vitro . Adv Pharmacol Sci 2014; 2014: 739834
  • 61 Ezuruike UF, Prieto JM. The use of plants in the traditional management of diabetes in Nigeria: pharmacological and toxicological considerations. J Ethnopharmacol 2014; 155: 857-924
  • 62 Mohammed A, Ibrahim MA, Islam MS. African medicinal plants with antidiabetic potentials: a review. Planta Med 2014; 80: 354-377
  • 63 Jamila F, Mostafa E. Ethnobotanical survey of medicinal plants used by people in Oriental Morocco to manage various ailments. J Ethnopharmacol 2014; 154: 76-87
  • 64 Afifi FU, Kasabri V. Pharmacological and phytochemical appraisal of selected medicinal plants from Jordan with claimed antidiabetic activities. Sci Pharm 2013; 81: 889-932
  • 65 Bussmann RW, Paniagua-Zambrana N, Chamorro MR, Moreira NM, del Rosario Cuadros Negri ML, Olivera J. Peril in the market-classification and dosage of species used as anti-diabetics in Lima, Peru. J Ethnobiol Ethnomed 2013; 9: 37
  • 66 Tabatabaei-Malazy O, Larijani B, Abdollahi M. A systematic review of in vitro studies conducted on effect of herbal products on secretion of insulin from Langerhans islets. J Pharm Pharm Sci 2012; 15: 447-466
  • 67 Akshatha VJ, Nalini MS, DʼSouza C, Prakash HS. Streptomycete endophytes from anti-diabetic medicinal plants of the Western Ghats inhibit α-amylase and promote glucose uptake. Lett Appl Microbiol 2014; 58: 433-439
  • 68 Melzig MF, Funke I. Pflanzliche Alpha-Amylasehemmer – eine Möglichkeit zur Phytotherapie bei Diabetes Mellitus Typ II?. Wien Med Wochenschr 2007; 157: 320-324
  • 69 Rahimzadeh M, Jahanshahi S, Moein S, Moein MR. Evaluation of alpha-amylase inhibition by Urtica dioica and Juglans regia extracts. Iran J Basic Med Sci 2014; 17: 465-469
  • 70 Li Y, Chen Y, Xiao C, Chen D, Xiao Y, Mei Z. Rapid screening and identification of α-amylase inhibitors from Garcinia xanthochymus using enzyme-immobilized magnetic nanoparticles coupled with HPLC and MS. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 960: 166-173
  • 71 Wilcox G. Review article insulin and insulin resistance. Clin Biochem Rev 2005; 26: 19-39
  • 72 Sangeetha MK, Priya CD, Vasanthi HR. Anti-diabetic property of Tinospora cordifolia and its active compound is mediated through the expression of Glut-4 in L6 myotubes. Phytomedicine 2013; 20: 246-248
  • 73 Kadan S, Saad B, Sasson Y, Zaid H. In vitro evaluations of cytotoxicity of eight antidiabetic medicinal plants and their effect on GLUT4 Translocation. Evid Based Complement Alternat Med 2013; 2013: 549345
  • 74 Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002; 53: 409-435
  • 75 Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 2014; 92: 73-89
  • 76 Katz SR, Newman RA, Lansky EP. Punica granatum: heuristic treatment for diabetes mellitus. J Med Food 2007; 10: 213-217
  • 77 Gaur R, Yadav KS, Verma RK, Yadav NP, Bhakuni RS. In vivo anti-diabetic activity of derivatives of isoliquiritigenin and liquiritigenin. Phytomedicine 2014; 21: 415-422
  • 78 Lv XF, Meng QY, Guo XM. Effect of Rehmannia glutinosa water extraction on insulin resistance and gene expression of resistin in type 2 diabetes mellitus rats. Zhongguo Zhong Yao Za Zhi 2007; 32: 2182-2184
  • 79 Seo JB, Choe SS, Jeong HW, Park SW, Shin HJ, Choi SM, Park JY, Choi EW, Kim JB, Seen DS, Jeong JY, Lee TG. Anti-obesity effects of Lysimachia foenum-graecum characterized by decreased adipogenesis and regulated lipid metabolism. Exp Mol Med 2011; 43: 205-215
  • 80 Kim YJ, Choi MS, Park YB, Kim SR, Lee MK, Jung UJ. Garcinia cambogia attenuates diet-induced adiposity but exacerbates hepatic collagen accumulation and inflammation. World J Gastroenterol 2013; 19: 4689-4701
  • 81 Ilavenil S, Arasu MV, Lee JC, Kim da H, Roh SG, Park HS, Choi GJ, Mayakrishnan V, Choi KC. Trigonelline attenuates the adipocyte differentiation and lipid accumulation in 3T3-L1 cells. Phytomedicine 2014; 21: 758-765
  • 82 Kim HS, Sung HY, Kim MS, Kim JL, Kang MK, Gong JH, Park HS, Kang YH. Oleanolic acid suppresses resistin induction in adipocytes by modulating Tyk-STAT signaling. Nutr Res 2013; 33: 144-153
  • 83 Mauricio D. Inhibidores SGLT-2: de la corteza del manzano y la glucosuria familiar al tratamiento de la diabetes mellitus tipo 2. Med Clin (Barc) 2013; 141 (Suppl. 02) S31-S35
  • 84 Makarova E, Górnaś P, Konrade I, Tirzite D, Cirule H, Gulbe A, Pugajeva I, Seglina D, Dambrova M. Acute anti-hyperglycaemic effects of an unripe apple preparation containing phlorizin in healthy volunteers: a preliminary study. J Sci Food Agric 2015; 95: 560-568
  • 85 Chao EC, Henry RR. SGLT2 inhibition–a novel strategy for diabetes treatment. Nat Rev Drug Discov 2010; 9: 551-559
  • 86 Yabe D, Seino Y. Two incretin hormones GLP-1 and GIP: comparison of their actions in insulin secretion and β cell preservation. Prog Biophys Mol Biol 2011; 107: 248-256
  • 87 Cernea S, Raz I. Therapy in the early stage: incretins. Diabetes Care 2011; 34 (Suppl. 02) S264-S271
  • 88 Kosaraju J, Dubala A, Chinni S, Khatwal RB, Satish Kumar MN, Basavan D. A molecular connection of Pterocarpus marsupium, Eugenia jambolana and Gymnema sylvestre with dipeptidyl peptidase-4 in the treatment of diabetes. Pharm Biol 2014; 52: 268-271
  • 89 Saleem S, Jafri L, Haq IU, Chee Chang L, Calderwood D, Green BD, Mirza B. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. J Ethnopharmacol 2014; 1156: 26-36
  • 90 Wang P, Alvarez-Perez JC, Felsenfeld DP, Liu H, Sivendran S, Bender A, Kumar A, Sanchez R, Scott DK, Garcia-Ocaña A, Stewart AF. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication. Nat Med 2015; 21: 383-388
  • 91 Combs AP. Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J Med Chem 2010; 53: 2333-2344
  • 92 Uddin MN, Sharma G, Yang JL, Choi HS, Lim SI, Kang KW, Oh WK. Oleanane triterpenes as protein tyrosine phosphatase 1B (PTP1B) inhibitors from Camellia japonica . Phytochemistry 2014; 103: 99-106
  • 93 Pitschmann A, Zehl M, Atanasov AG, Dirsch VM, Heiss E, Glasl S. Walnut leaf extract inhibits PTP1B and enhances glucose-uptake in vitro . J Ethnopharmacol 2014; 152: 599-602
  • 94 Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107: 1058-1070
  • 95 Halliwell B. Free radicals and antioxidants: updating a personal view. Nutr Rev 2012; 70: 257-265
  • 96 Palma HE, Wolkmer P, Gallio M, Corrêa MM, Schmatz R, Thomé GR, Pereira LB, Castro VS, Pereira AB, Bueno A, de Oliveira LS, Rosolen D, Mann TR, de Cecco BS, Graça DL, Lopes ST, Mazzanti CM. Oxidative stress parameters in blood, liver, and kidney of diabetic rats treated with curcumin and/or insulin. Mol Cell Biochem 2014; 386: 199-210
  • 97 Manzari-Tavakoli A, Pouraboli I, Yaghoobi MM, Mehrabani M, Mirtadzadini SM. Antihyperglycemic, antilipid peroxidation, and insulin secretory activities of Otostegia persica shoot extract in streptozotocin-induced diabetic rats and in vitro C187 pancreatic β-cells. Pharm Biol 2013; 51: 253-259
  • 98 Ha US, Bae WJ, Kim SJ, Yoon BI, Jang H, Hong SH, Lee JY, Hwang SY, Kim SW. Protective effect of cyanidin-3-O-β-D-glucopyranoside fraction from mulberry fruit pigment against oxidative damage in streptozotocin-induced diabetic rat bladder. Neurourol Urodyn 2013; 32: 493-499
  • 99 Talukder FZ, Khan KA, Uddin R, Jahan N, Alam MA. In vitro free radical scavenging and anti-hyperglycemic activities of Achyranthes aspera extract in alloxan-induced diabetic mice. Drug Discov Ther 2012; 6: 298-305
  • 100 Teugwa CM, Mejiato PC, Zofou D, Tchinda BT, Boyom FF. Antioxidant and antidiabetic profiles of two African medicinal plants: Picralima nitida (Apocynaceae) and Sonchus oleraceus (Asteraceae). BMC Complement Altern Med 2013; 13: 175
  • 101 El-Amin M, Virk P, Elobeid MA, Almarhoon ZM, Hassan ZK, Omer SA, Merghani NM, Daghestani MH, Al-Olayan EM. Anti-diabetic effect of Murraya koenigii (L) and Olea europaea (L) leaf extracts on streptozotocin induced diabetic rats. Pak J Pharm Sci 2013; 26: 359-365
  • 102 Li Z, Geng YN, Jiang JD, Kong WJ. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid Based Complement Alternat Med 2014; 2014: 289264
  • 103 Castro MC, Massa ML, Schinella G, Gagliardino JJ, Francini F. Lipoic acid prevents liver metabolic changes induced by administration of a fructose-rich diet. Biochim Biophys Acta 2013; 1830: 2226-2232
  • 104 Castro MC, Francini F, Schinella G, Caldiz CI, Zubiria MG, Gagliardino JJ, Massa ML. Apocynin administration prevents the changes induced by a fructose-rich diet on rat liver metabolism and the antioxidant system. Clin Sci (Lond) 2012; 123: 681-692
  • 105 Li ZQ, Chang HJ, Sang WF. Clinical efficacy of special effect san xiao decoction on type 2 diabetes mellitus. Zhong Yao Cai 2013; 36: 163-166
  • 106 Sengupta K, Mishra AT, Rao MK, Sarma KV, Krishnaraju AV, Trimurtulu G. Efficacy and tolerability of a novel herbal formulation for weight management in obese subjects: a randomized double blind placebo controlled clinical study. Lipids Health Dis 2012; 11: 122
  • 107 Ghorbani A. Clinical and experimental studies on polyherbal formulations for diabetes: current status and future prospective. J Integr Med 2014; 12: 336-345
  • 108 Moona MM, Smits R, Kertesz J, Meyer A, Mackler L. Clinical inquiry: do complementary agents lower HbA1c when used with standard type 2 diabetes therapy?. J Fam Pract 2014; 63: 336-338
  • 109 Vogler BK, Ernst E. Aloe vera: a systematic review of its clinical effectiveness. Br J Gen Pract 1999; 49: 823-828
  • 110 Devaraj S, Yimam M, Brownell LA, Jialal I, Singh S, Jia Q. Effects of Aloe vera supplementation in subjects with prediabetes/metabolic syndrome. Metab Syndr Relat Disord 2013; 11: 35-40
  • 111 Choi HC, Kim SJ, Son KY, Oh BJ, Cho BL. Metabolic effects of Aloe vera gel complex in obese prediabetes and early non-treated diabetic patients: randomized controlled trial. Nutrition 2013; 29: 1110-1114
  • 112 Stohs SJ, Miller H, Kaats GR. A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid. Phytother Res 2012; 26: 317-324
  • 113 Leung L, Birtwhistle R, Kotecha J, Hannah S, Cuthbertson S. Anti-diabetic and hypoglycaemic effects of Momordica charantia (bitter melon): a mini review. Br J Nutr 2009; 102: 1703-1708
  • 114 Chuang CY, Hsu C, Chao CY, Wein YS, Kuo YH, Huang CJ. Fractionation and identification of 9c,11 t,13 t-conjugated linolenic acid as an activator of PPARα in bitter gourd (Momordica charantia L.). J Biomed Sci 2006; 13: 763-772
  • 115 Yibchok-Anun S, Adisakwattana S, Yao CY, Sangvanich P, Roengsumran S, Hsu WH. Slow acting protein extract from fruit pulp of Momordica charantia with insulin secretagogue and insulinomimetic activities. Biol Pharm Bull 2006; 29: 1126-1131
  • 116 Ooi CP, Yassin Z, Hamid TA. Momordica charantia for type 2 diabetes mellitus. Cochrane Database Syst Rev 2010; (2) CD007845
  • 117 Ooi CP, Yassin Z, Hamid TA. Momordica charantia for type 2 diabetes mellitus. Cochrane Database Syst Rev 2012; (8) CD007845
  • 118 Medagama AB, Bandara R. The use of complementary and alternative medicines (CAMs) in the treatment of diabetes mellitus: is continued use safe and effective?. Nutr J 2014; 13: 102
  • 119 Huseini HF, Hasani-Rnjbar S, Nayebi N, Heshmat R, Sigaroodi FK, Ahvazi M, Alaei BA, Kianbakht S. Capparis spinosa L. (Caper) fruit extract in treatment of type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Complement Ther Med 2013; 21: 447-452
  • 120 Khan A, Bryden NA, Polansky MM, Anderson RA. Insulin potentiating factor and chromium content of selected foods and spices. Biol Trace Elem Res 1990; 24: 183-188
  • 121 Broadhurst CL, Polansky MM, Anderson RA. Insulin-like biological activity of culinary and medicinal plant aqueous extracts in vitro . J Agric Food Chem 2000; 48: 849-852
  • 122 Jarvill-Taylor KJ, Anderson RA, Graves DJ. A hydroxychalcone derived from cinnamon functions as a mimetic for insulin in 3T3–L1 adipocytes. J Am Coll Nutr 2001; 20: 327-336
  • 123 Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y. Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res Clin Pract 2003; 62: 139-148
  • 124 Gruenwald J, Freder J, Armbruester N. Cinnamon and health. Crit Rev Food Sci Nutr 2010; 50: 822-834
  • 125 Anderson RA, Broadhurst CL, Polansky MM, Schmidt WF, Khan A, Flanagan VP, Schoene NW, Graves DJ. Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like biological activity. J Agric Food Chem 2004; 52: 65-70
  • 126 Khan A, Safdar M, Ali Khan MM, Khattak KN, Anderson RA. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 2003; 26: 3215-3218
  • 127 Vanschoonbeek K, Thomassen BJ, Senden JM, Wodzig WK, van Loon LJ. Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J Nutr 2006; 136: 977-980
  • 128 Pham AQ, Kourlas H, Pham DQ. Cinnamon supplementation in patients with type 2 diabetes mellitus. Pharmacotherapy 2007; 27: 595-599
  • 129 Kirkham S, Akilen R, Sharma S, Tsiami A. The potential of cinnamon to reduce blood glucose levels in patients with type 2 diabetes and insulin resistance. Diabetes Obes Metab 2009; 11: 1100-1113
  • 130 Davis PA, Yokoyama W. Cinnamon intake lowers fasting blood glucose: meta-analysis. J Med Food 2011; 14: 884-889
  • 131 Leach MJ, Kumar S. Cinnamon for diabetes mellitus. Cochrane Database Syst Rev 2012; (9) CD007170
  • 132 Akilen R, Tsiami A, Devendra D, Robinson N. Cinnamon in glycaemic control: Systematic review and meta analysis. Clin Nutr 2012; 31: 609-615
  • 133 Andújar I, Recio MC, Giner RM, Ríos JL. Cocoa polyphenols and their potential benefits for human health. Oxid Med Cell Longev 2012; 2012: 906252
  • 134 Latif R. Chocolate/cocoa and human health: a review. Neth J Med 2013; 71: 63-68
  • 135 Grassi D, Desideri G, Necozione S, Lippi C, Casale R, Properzi G, Blumberg JB, Ferri C. Blood pressure is reduced and insulin sensitivity increased in glucose-intolerant, hypertensive subjects after 15 days of consuming high-polyphenol dark chocolate. J Nutr 2008; 138: 1671-1676
  • 136 Hooper L, Kay C, Abdelhamid A, Kroon PA, Cohn JS, Rimm EB, Cassidy A. Effects of chocolate, cocoa, and flavan-3-ols on cardiovascular health: a systematic review and meta-analysis of randomized trials. Am J Clin Nutr 2012; 95: 740-751
  • 137 Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation 2006; 113: 1888-1904
  • 138 Salazar-Martínez E, Willett WC, Ascherio A, Manson JE, Leitzmann MF, Stampfer MJ, Hu FB. Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med 2004; 140: 1-8
  • 139 Pereira MA, Parker ED, Folsom AR. Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28812 postmenopausal women. Arch Intern Med 2006; 166: 1311-1316
  • 140 Basch E, Ulbricht C, Kuo G, Szapary P, Smith M. Therapeutic applications of fenugreek. Altern Med Rev 2003; 8: 20-27
  • 141 Haber SL, Keonavong J. Fenugreek use in patients with diabetes mellitus. Am J Health Syst Pharm 2013; 70: 1196-1203
  • 142 Yadav UC, Baquer NZ. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm Biol 2014; 52: 243-254
  • 143 Swaroop A, Bagchi M, Kumar P, Preuss HG, Tiwari K, Marone PA, Bagchi D. Safety, efficacy and toxicological evaluation of a novel, patented anti-diabetic extract of Trigonella foenum-fraecum seed extract (Fenfuro). Toxicol Mech Methods 2014; 24: 495-503
  • 144 Neelakantan N, Narayanan M, de Souza RJ, van Dam RM. Effect of fenugreek (Trigonella foenum-graecum L.) intake on glycemia: a meta-analysis of clinical trials. Nutr J 2014; 13: 7
  • 145 Zhou J, Chan L, Zhou S. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 2012; 19: 3523-3531
  • 146 Ackermann RT, Mulrow CD, Ramirez G, Gardner CD, Morbidoni L, Lawrence VA. Garlic shows promise for improving some cardiovascular risk factors. Arch Intern Med 2001; 161: 813-824
  • 147 Mohammadi A, Oshaghi EA. Effect of garlic on lipid profile and expression of LXR alpha in intestine and liver of hypercholesterolemic mice. J Diabetes Metab Disord 2014; 13: 20
  • 148 Gutiérrez RM, Mitchell S, Solis RV. Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2008; 117: 1-27
  • 149 Tiwari P, Mishra BN, Sangwan NS. Phytochemical and pharmacological properties of Gymnema sylvestre: an important medicinal plant. Biomed Res Int 2014; 2014: 830285
  • 150 Di Fabio G, Romanucci V, Zarrelli M, Giordano M, Zarrelli A. C-4 gem-dimethylated oleanes of Gymnema sylvestre and their pharmacological activities. Molecules 2013; 18: 14892-14919
  • 151 Alqahtani A, Hamid K, Kam A, Wong KH, Abdelhak Z, Razmovski-Naumovski V, Chan K, Li KM, Groundwater PW, Li GQ. The pentacyclic triterpenoids in herbal medicines and their pharmacological activities in diabetes and diabetic complications. Curr Med Chem 2013; 20: 908-931
  • 152 Kumar SN, Mani UV, Mani I. An open label study on the supplementation of Gymnema sylvestre in type 2 diabetics. J Diet Suppl 2010; 7: 273-282
  • 153 Dar SA, Ganai FA, Yousuf AR, Balkhi MU, Bhat TM, Sharma P. Pharmacological and toxicological evaluation of Urtica dioica . Pharm Biol 2013; 51: 170-180
  • 154 Rau O, Wurglics M, Dingermann T, Abdel-Tawab M, Schubert-Zsilavecz M. Screening of herbal extracts for activation of the human peroxisome proliferator-activated receptor. Pharmazie 2006; 61: 952-956
  • 155 Kianbakht S, Khalighi-Sigaroodi F, Dabaghian FH. Improved glycemic control in patients with advanced type 2 diabetes mellitus taking Urtica dioica leaf extract: a randomized double-blind placebo-controlled clinical trial. Clin Lab 2013; 59: 1071-1076
  • 156 Kianbakht S, Dabaghian FH. Improved glycemic control and lipid profile in hyperlipidemic type 2 diabetic patients consuming Salvia officinalis L. leaf extract: a randomized placebo. Controlled clinical trial. Complement Ther Med 2013; 21: 441-446
  • 157 Eidi M, Eidi A, Zamanizadeh H. Effect of Salvia officinalis L. leaves on serum glucose and insulin in healthy and streptozocin-induced diabetic rats. J Ethnopharmacol 2005; 100: 310-313
  • 158 Lima CF, Azevedo MF, Araujo R, Fernandes-Ferreira M, Pereira-Wilson C. Metformine-like effect of Salvia officinalis (common sage): is it useful in diabetes prevention?. Br J Nutr 2006; 96: 326-333
  • 159 Sa CM, Ramos AA, Azevedo MF, Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Sage tea drinking improves lipid profile and antioxidant defenses in humans. Int J Mol Sci 2009; 10: 3937-3950
  • 160 Kianbakht S, Abasi B, Perham M, Hashem Dabaghian F. Antihyperlipidemic effects of Salvia officinalis L. leaf extract in patients with hyperlipidemia: a randomized double blind placebo-controlled clinical trial. Phytother Res 2011; 25: 1849-1853
  • 161 Choi SB, Jang JS, Park S. Estrogen and exercise may enhance beta-cell function and mass via insulin receptor substrate 2 induction in ovariectomized diabetic rats. Endocrinology 2005; 146: 4786-4794
  • 162 Kwon DY, Daily 3rd JW, Kim HJ, Park S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr Res 2010; 30: 1-13
  • 163 Zhang YB, Chen WH, Guo JJ, Fu ZH, Yi C, Zhang M, Na XL. Soy isoflavone supplementation could reduce body weight and improve glucose metabolism in non-Asian postmenopausal women–a meta-analysis. Nutrition 2013; 29: 8-14
  • 164 Khan N, Mukhtar H. Tea and health: studies in humans. Curr Pharm Des 2013; 19: 6141-6147
  • 165 Song Y, Manson JE, Buring JE, Sesso HD, Liu S. Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J Am Coll Nutr 2005; 24: 376-384
  • 166 Iso H, Date C, Wakai K, Fukui M, Tamakoshi A. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann Intern Med 2006; 144: 554-562
  • 167 Neyestani TR, Shariatzade N, Kalayi A, Gharavi A, Khalaji N, Dadkhah M, Zowghi T, Haidari H, Shab-bidar S. Regular daily intake of black tea improves oxidative stress biomarkers and decreases serum C-reactive protein levels in type 2 diabetic patients. Ann Nutr Metabol 2010; 57: 40-49
  • 168 Nagao T, Meguro S, Hase T, Otsuka K, Komikado M, Tokimitsu I, Yamamoto T, Yamamoto K. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity (Silver Spring) 2009; 17: 310-317
  • 169 Aggarwal BB, Yuan W, Li S, Gupta SC. Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: Identification of novel components of turmeric. Mol Nutr Food Res 2013; 57: 1529-1542
  • 170 Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB. Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol Nutr Food Res 2013; 57: 1510-1528
  • 171 Wickenberg J, Ingemansson SL, Hlebowicz J. Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects. Nutr J 2010; 9: 43
  • 172 Khajehdehi P, Pakfetrat M, Javidnia K, Azad F, Malekmakan L, Nasab MH, Dehghanzadeh G. Oral supplementation of turmeric attenuates proteinuria, transforming growth factor-β and interleukin-8 levels in patients with overt type 2 diabetic nephropathy: a randomized, double-blind and placebo-controlled study. Scand J Urol Nephrol 2011; 45: 365-370
  • 173 Aldebasi YH, Aly SM, Rahmani AH. Therapeutic implications of curcumin in the prevention of diabetic retinopathy via modulation of anti-oxidant activity and genetic pathways. Int J Physiol Pathophysiol Pharmacol 2013; 5: 194-202
  • 174 Maradana MR, Thomas R, OʼSullivan BJ. Targeted delivery of curcumin for treating type 2 diabetes. Mol Nutr Food Res 2013; 57: 1550-1556
  • 175 Hosseini S, Huseini HF, Larijani B, Mohammad K, Najmizadeh A, Nourijelyani K, Jamshidi L. The hypoglycemic effect of Juglans regia leaves aqueous extract in diabetic patients: A first human trial. Daru 2014; 22: 19
  • 176 Jelodar G, Mohsen M, Shahram S. Effect of walnut leaf, coriander and pomegranate on blood glucose and histopathology of pancreas of alloxan induced diabetic rats. Afr J Tradit Complement Altern Med 2007; 43: 299-305
  • 177 Asgary S, Parkhideh S, Solhpour A, Madani H, Mahzouni P, Rahimi P. Effect of ethanolic extract of Juglans regia L. on blood sugar in diabetes-induced rats. J Med Food 2008; 11: 533-538
  • 178 Mohammadi J, Sadeqpour K, Delaviz H, Mohammadi B. Anti-diabetic effects of an alcoholic extract of Juglans regia in an animal model. Turk J Med Sci 2011; 41: 685-691
  • 179 Hosseini S, Jamshidi L, Mehrzadi S, Mohammad K, Najmizadeh AR, Alimoradi H, Huseini HF. Effects of Juglans regia L. leaf extract on hyperglycemia and lipid profiles in type two diabetic patients: a randomized double-blind, placebo-controlled clinical trial. J Ethnopharmacol 2014; 152: 451-456
  • 180 Ahmad H, Khan I, Wahid A. Antiglycation and antioxidation properties of Juglans regia and Calendula officinalis: possible role in reducing diabetic complications and slowing down ageing. J Tradit Chin Med 2012; 32: 411-414
  • 181 Heck CI, de Mejia EG. Yerba Mate Tea (Ilex paraguariensis): a comprehensive review on chemistry, health implications, and technological considerations. J Food Sci 2007; 72: R138-R151
  • 182 Bracesco N, Sánchez AG, Contreras V, Menini T, Gugliucci A. Recent advances on Ilex paraguariensis research: minireview. J Ethnopharmacol 2011; 136: 378-384
  • 183 Schinella G, Neyret E, Cónsole G, Tournier H, Prieto JM, Ríos JL, Giner RM. An aqueous extract of Ilex paraguariensis reduces carrageenan-induced edema and inhibits the expression of cyclooxygenase-2 and inducible nitric oxide synthase in animal models of inflammation. Planta Med 2014; 80: 961-968
  • 184 Oliveira DM, Freitas HS, Souza MF, Arçari DP, Ribeiro ML, Carvalho PO, Bastos DH. Yerba Maté (Ilex paraguariensis) aqueous extract decreases intestinal SGLT1 gene expression but does not affect other biochemical parameters in alloxan-diabetic Wistar rats. J Agric Food Chem 2008; 56: 10527-10532
  • 185 Kang YR, Lee HY, Kim JH, Moon DI, Seo MY, Park SH, Choi KH, Kim CR, Kim SH, Oh JH, Cho SW, Kim SY, Kim MG, Chae SW, Kim O, Oh HG. Anti-obesity and anti-diabetic effects of Yerba Mate (Ilex paraguariensis) in C57BL/6J mice fed a high-fat diet. Lab Anim Res 2012; 28: 23-29
  • 186 Arçari DP, Bartchewsky jr. W, dos Santos TW, Oliveira KA, DeOliveira CC, Gotardo ÉM, Pedrazzoli jr. J, Gambero A, Ferraz LF, Carvalho Pde O, Ribeiro ML. Anti-inflammatory effects of yerba maté extract (Ilex paraguariensis) ameliorate insulin resistance in mice with high fat diet-induced obesity. Mol Cell Endocrinol 2011; 335: 110-115
  • 187 Pereira DF, Kappel VD, Cazarolli LH, Boligon AA, Athayde ML, Guesser SM, Da Silva EL, Silva FR. Influence of the traditional Brazilian drink Ilex paraguariensis tea on glucose homeostasis. Phytomedicine 2012; 19: 868-877
  • 188 Kahn SE, Hull RL, Utzschneider KM. Review article mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444: 840-846
  • 189 De Morais EC, Stefanuto A, Klein GA, Boaventura BC, de Andrade F, Wazlawik E, Di Pietro PF, Maraschin M, da Silva EL. Consumption of yerba mate (Ilex paraguariensis) improves serum lipid parameters in healthy dyslipidemic subjects and provides an additional LDL-cholesterol reduction in individuals on statin therapy. J Agric Food Chem 2009; 57: 8316-8324
  • 190 Klein GA, Stefanuto A, Boaventura BC, de Morais EC, Cavalcante Lda S, de Andrade F, Wazlawik E, Di Pietro PF, Maraschin M, da Silva EL. Mate tea (Ilex paraguariensis) improves glycemic and lipid profiles of type 2 diabetes and pre-diabetes individuals: a pilot study. J Am Coll Nutr 2011; 30: 320-332
  • 191 Bremer Boaventura C, Faria Di Pietro P, Klein GA, Stefanuto A, de Morais EC, de Andrade F, Wazlawika E, da Silva EL. Antioxidant potential of mate tea (Ilex paraguariensis) in type 2 diabetic mellitus and pre-diabetic individuals. J Funct Foods 2013; 5: 1057-1064
  • 192 Anuradha CV. Phytochemicals targeting genes relevant for type 2 diabetes. Can J Physiol Pharmacol 2013; 91: 397-411
  • 193 Suhitha S, Gunasekaran K, Velmurugan D. Structure based design of compounds from natural sources for diabetes and inflammation. Bioinformation 2012; 8: 1125-1131
  • 194 Vanaclocha B, Risco E, Cañigueral S. Interacciones entre preparados vegetales y fármaos de sínteis: revisión de las monografías de la EMA y ESCOP. Rev Fitoter 2014; 14: 5-36
  • 195 Bratman S, Girman AM. Mosbyʼs handbook of herbs and supplements and their therapeutic uses. St. Louis: Mosby Health Gate; 2003
  • 196 Harkness R, Bratman S. Mosbyʼs handbook of drug-herb and drug-supplement interactions. St. Louis: Mosby Health Gate; 2003
  • 197 Ríos JL. Fitoterapia. Valencia (Spain): Publicaciones Universitat de Valencia; 2009