Subscribe to RSS
DOI: 10.1055/s-0035-1546146
Das biologische Skalpell II – Frakturheilung und pharmakologische Einflussfaktoren
The Biological Knife II – Fracture Healing and Pharmacological InteractionsPublication History
Publication Date:
29 June 2015 (online)
Zusammenfassung
Die Ursachen für eine gestörte oder ausbleibende Frakturheilung sind multifaktoriell. Neben mechanischen Ursachen kommt den biologischen Einflussfaktoren eine große Rolle zu. Da uns kaum Therapieansätze zur Stimulation der Frakturheilung zur Verfügung stehen, sollte die Optimierung der biologischen Grundvoraussetzungen essenzieller Bestandteil der Frakturbehandlung sein. Neben der Beachtung patientenbezogener Einflussfaktoren können auch verschiedene Medikamente die Frakturheilung positiv oder negativ beeinflussen. Bei jüngeren, ansonsten gesunden Patienten erfolgt im Rahmen der Frakturbehandlung regelhaft eine Medikation mit Arzneistoffen zur Schmerztherapie und zur Prophylaxe von Infektionen und Thrombosen. Bei vielen älteren Patienten liegt zusätzlich aufgrund bestehender Komorbiditäten häufig bereits zum Zeitpunkt der Fraktur eine Polymedikation mit unterschiedlichsten Arzneistoffen vor. Ziel der vorliegenden Arbeit ist es, eine Übersicht zu geben über pharmakologische Einflussfaktoren auf die Frakturheilung. Die Kenntnis dieser Einflussfaktoren ermöglicht es, durch Vermeidung bestimmter Arzneistoffe die Bedingungen für eine zeitgerechte Frakturheilung zu optimieren. Darüber hinaus soll ein Überblick gegeben werden, welche pharmakologischen Wirkstoffe aktuell oder in naher Zukunft zur Verfügung stehen, um die Frakturheilung zu stimulieren.
Abstract
The reasons for delayed fracture healing or non-union formation are multifactorial. Mechanical factors are well known to influence the process of fracture healing. However, there is a lack of knowledge about the biological conditions that have to be achieved for adequate bone healing. Treatment of non-unions is still demanding and we have only poor options to stimulate the bone healing process. Therefore, it is important to optimise the biological conditions to avoid non-union formation. Beside patient-related factors, pharmacological drugs are able to impede or stimulate fracture healing. Especially geriatric patients show a pre-existing drug medication due to different co-morbidities. However, also younger patients are frequently treated with different drugs for infection prophylaxis, analgesia or thrombosis prophylaxis. The aim of the current review article is to give an overview about the influence of different pharmacological agents on the process of fracture healing. A deeper understanding of a drug-related influence on fracture healing could help the medical practitioner to optimise the general conditions for adequate fracture healing, i.e., by avoiding specific pharmacological agents. Vice versa some drugs could be used to stimulate fracture healing in the future.
-
Literatur
- 1 Matos MA, Tannuri U, Guarniero R. The effect of zoledronate during bone healing. J Orthop Traumatol 2010; 11: 7-12
- 2 Lyles KW, Colon-Emeric CS, Magaziner JS et al. Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 2007; 357: 1799-1809
- 3 Solomon DH, Hochberg MC, Mogun H et al. The relation between bisphosphonate use and non-union of fractures of the humerus in older adults. Osteoporos Int 2009; 20: 895-901
- 4 Rozental TD, Vazquez MA, Chacko AT et al. Comparison of radiographic fracture healing in the distal radius for patients on and off bisphosphonate therapy. J Hand Surg 2009; 34: 595-602
- 5 Goldhahn J, Little D, Mitchell P et al. Evidence for anti-osteoporosis therapy in acute fracture situations–recommendations of a multidisciplinary workshop of the International Society for Fracture Repair. Bone 2010; 46: 267-271
- 6 Gong HS, Song CH, Lee YH et al. Early initiation of bisphosphonate does not affect healing and outcomes of volar plate fixation of osteoporotic distal radial fractures. J Bone Joint Surg Am 2012; 94: 1729-1736
- 7 Andreassen TT, Ejersted C, Oxlund H. Intermittent parathyroid hormone (1–34) treatment increases callus formation and mechanical strength of healing rat fractures. J Bone Miner Res 1999; 14: 960-968
- 8 Aspenberg P, Genant HK, Johansson T et al. Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 2010; 25: 404-414
- 9 Aspenberg P, Johansson T. Teriparatide improves early callus formation in distal radial fractures. Acta Orthop 2010; 81: 234-236
- 10 Peichl P, Holzer LA, Maier R et al. Parathyroid hormone 1–84 accelerates fracture-healing in pubic bones of elderly osteoporotic women. J Bone Joint Surg Am 2011; 93: 1583-1587
- 11 Alegre DN, Ribeiro C, Sousa C et al. Possible benefits of strontium ranelate in complicated long bone fractures. Rheumatol Int 2012; 32: 439-443
- 12 Gerstenfeld LC, Sacks DJ, Pelis M et al. Comparison of effects of the bisphosphonate alendronate versus the RANKL inhibitor denosumab on murine fracture healing. J Bone Miner Res 2009; 24: 196-208
- 13 Adami S, Libanati C, Boonen S et al. Denosumab treatment in postmenopausal women with osteoporosis does not interfere with fracture-healing: results from the FREEDOM trial. J Bone Joint Surg Am 2012; 94: 2113-2119
- 14 Cao Y, Mori S, Mashiba T et al. Raloxifene, estrogen, and alendronate affect the processes of fracture repair differently in ovariectomized rats. J Bone Miner Res 2002; 17: 2237-2246
- 15 Goldhahn J, Feron JM, Kanis J et al. Implications for fracture healing of current and new osteoporosis treatments: an ESCEO consensus paper. Calcif Tissue Int 2012; 90: 343-353
- 16 Lyritis G, Boscainos PJ. Calcitonin effects on cartilage and fracture healing. J Musculoskelet Neuronal Interact 2001; 2: 137-142
- 17 Rejnmark L, Vestergaard P, Mosekilde L. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J Hypertens 2006; 24: 581-589
- 18 Garcia P, Schwenzer S, Slotta JE et al. Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation – role of a local renin-angiotensin system. Br J Pharmacol 2010; 159: 1672-1680
- 19 Graham S, Hammond-Jones D, Gamie Z et al. The effect of beta-blockers on bone metabolism as potential drugs under investigation for osteoporosis and fracture healing. Expert Opin Investig Drugs 2008; 17: 1281-1299
- 20 Ilic K, Obradovic N, Vujasinovic-Stupar N. The relationship among hypertension, antihypertensive medications, and osteoporosis: a narrative review. Calcif Tissue Int 2013; 92: 217-227
- 21 Mundy G, Garrett R, Harris S et al. Stimulation of bone formation in vitro and in rodents by statins. Science 1999; 286: 1946-1949
- 22 Patil S, Holt G, Raby N et al. Prospective, double blind, randomized, controlled trial of simvastatin in human fracture healing. J Orthop Res 2009; 27: 281-285
- 23 Nguyen ND, Wang CY, Eisman JA et al. On the association between statin and fracture: a Bayesian consideration. Bone 2007; 40: 813-820
- 24 Reid IR, Hague W, Emberson J et al. Effect of pravastatin on frequency of fracture in the LIPID study: secondary analysis of a randomised controlled trial. Long-term Intervention with Pravastatin in Ischaemic Disease. Lancet 2001; 357: 509-512
- 25 Toh S, Hernandez-Diaz S. Statins and fracture risk. A systematic review. Pharmacoepidemiol Drug Saf 2007; 16: 627-640
- 26 Perry AC, Prpa B, Rouse MS et al. Levofloxacin and trovafloxacin inhibition of experimental fracture-healing. Clin Orthop Relat Res 2003; 414: 95-100
- 27 Pountos I, Georgouli T, Blokhuis TJ et al. Pharmacological agents and impairment of fracture healing: what is the evidence?. Injury 2008; 39: 384-394
- 28 Kim SG, Chung TY, Kim MS et al. The effect of high local concentrations of antibiotics on demineralized bone induction in rats. J Oral Maxillofac Surg 2004; 62: 708-713
- 29 Stinchfield FE, Sankaran B, Samilson R. The effect of anticoagulant therapy on bone repair. J Bone Joint Surg Am 1956; 38-A: 270-282
- 30 Petersen W, Wildemann B, Pufe T et al. The angiogenic peptide pleiotrophin (PTN/HB-GAM) is expressed in fracture healing: an immunohistochemical study in rats. Arch Orthop Trauma Surg 2004; 124: 603-607
- 31 Say F, Iltar S, Alemdaroglu KB et al. The effect of various types low molecular weight heparins on fracture healing. Thromb Res 2013; 131: e114-e119
- 32 Zhang X, Schwarz EM, Young DA et al. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest 2002; 109: 1405-1415
- 33 Naik AA, Xie C, Zuscik MJ et al. Reduced COX-2 expression in aged mice is associated with impaired fracture healing. J Bone Miner Res 2009; 24: 251-264
- 34 Geusens P, Emans PJ, de Jong JJ et al. NSAIDs and fracture healing. Curr Opin Rheumatol 2013; 25: 524-531
- 35 Dodwell ER, Latorre JG, Parisini E et al. NSAID exposure and risk of nonunion: a meta-analysis of case-control and cohort studies. Calcif Tissue Int 2010; 87: 193-202
- 36 Lack WD, Fredericks D, Petersen E et al. Effect of aspirin on bone healing in a rabbit ulnar osteotomy model. J Bone Joint Surg Am 2013; 95: 488-496
- 37 Khalili H, Huang ES, Jacobson BC et al. Use of proton pump inhibitors and risk of hip fracture in relation to dietary and lifestyle factors: a prospective cohort study. BMJ 2012; 344: e372
- 38 Kwok CS, Yeong JK, Loke YK. Meta-analysis: risk of fractures with acid-suppressing medication. Bone 2011; 48: 768-776
- 39 Histing T, Stenger D, Scheuer C et al. Pantoprazole, a proton pump inhibitor, delays fracture healing in mice. Calcif Tissue Int 2012; 90: 507-514
- 40 Hamzat H, Sun H, Ford JC et al. Inappropriate prescribing of proton pump inhibitors in older patients: effects of an educational strategy. Drugs Aging 2012; 29: 681-690
- 41 Holstein JH, Klein M, Garcia P et al. Rapamycin affects early fracture healing in mice. Br J Pharmacol 2008; 154: 1055-1062
- 42 Visser K, Katchamart W, Loza E et al. Multinational evidence-based recommendations for the use of methotrexate in rheumatic disorders with a focus on rheumatoid arthritis: integrating systematic literature research and expert opinion of a broad international panel of rheumatologists in the 3E Initiative. Ann Rheum Dis 2009; 68: 1086-1093
- 43 Sarhaddi D, Tchanque-Fossuo CN, Poushanchi B et al. Amifostine protects vascularity and improves union in a model of irradiated mandibular fracture healing. Plast Reconstr Surg 2013; 132: 1542-1549
- 44 Gaston MS, Simpson AH. Inhibition of fracture healing. J Bone Joint Surg Br 2007; 89: 1553-1560
- 45 Hogevold HE, Grogaard B, Reikeras O. Effects of short-term treatment with corticosteroids and indomethacin on bone healing. A mechanical study of osteotomies in rats. Acta Orthop Scand 1992; 63: 607-611
- 46 Holstein JH, Menger MD, Scheuer C et al. Erythropoietin (EPO): EPO-receptor signaling improves early endochondral ossification and mechanical strength in fracture healing. Life Sci 2007; 80: 893-900
- 47 Garcia P, Speidel V, Scheuer C et al. Low dose erythropoietin stimulates bone healing in mice. J Orthop Res 2011; 29: 165-172
- 48 Bakhshi H, Kazemian G, Emami M et al. Local erythropoietin injection in tibiofibular fracture healing. Trauma Mon 2013; 17: 386-388
- 49 Raschke M, Kolbeck S, Bail H et al. Homologous growth hormone accelerates healing of segmental bone defects. Bone 2001; 29: 368-373
- 50 Van der Lely AJ, Lamberts SW, Jauch KW et al. Use of human GH in elderly patients with accidental hip fracture. Eur J Endocrinol 2000; 143: 585-592
- 51 Boonen S, Rosen C, Bouillon R et al. Musculoskeletal effects of the recombinant human IGF-I/IGF binding protein-3 complex in osteoporotic patients with proximal femoral fracture: a double-blind, placebo-controlled pilot study. J Clin Endocrinol Metab 2002; 87: 1593-1599
- 52 Raschke M, Rasmussen MH, Govender S et al. Effects of growth hormone in patients with tibial fracture: a randomised, double-blind, placebo-controlled clinical trial. Eur J Endocrinol 2007; 156: 341-351
- 53 Govender S, Csimma C, Genant HK et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 2002; 84-A: 2123-2134
- 54 Burkus JK, Gornet MF, Dickman CA et al. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 2002; 15: 337-349
- 55 Friedlaender GE, Perry CR, Cole JD et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am 2001; 83-A (Suppl. 01) S151-S158
- 56 Garrison KR, Shemilt I, Donell S et al. Bone morphogenetic protein (BMP) for fracture healing in adults. Cochrane Database Syst Rev 2010; (6) CD006950
- 57 Carreira AC, Lojudice FH, Halcsik E et al. Bone morphogenetic proteins: facts, challenges, and future perspectives. J Dent Res 2014; 93: 335-345
- 58 Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19: 179-192
- 59 Padhi D, Jang G, Stouch B et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 2011; 26: 19-26
- 60 McClung MR, Grauer A, Boonen S et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 2014; 370: 412-420
- 61 Calori GM, Phillips M, Jeetle S et al. Classification of non-union: need for a new scoring system?. Injury 2008; 39 (Suppl. 02) S59-S63