Planta Med 2015; 81(12/13): 1065-1074
DOI: 10.1055/s-0035-1546165
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Piperine Congeners as Inhibitors of Vascular Smooth Muscle Cell Proliferation[*]

Christina E. Mair#
1   Department of Pharmacognosy, University of Vienna, Vienna, Austria
2   Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria
,
Rongxia Liu#
1   Department of Pharmacognosy, University of Vienna, Vienna, Austria
4   School of Pharmacy, Yantai University, Yantai, China
,
Atanas G. Atanasov
1   Department of Pharmacognosy, University of Vienna, Vienna, Austria
,
Laurin Wimmer
3   Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
,
Daniel Nemetz-Fiedler
1   Department of Pharmacognosy, University of Vienna, Vienna, Austria
,
Nadine Sider
1   Department of Pharmacognosy, University of Vienna, Vienna, Austria
,
Elke H. Heiss
1   Department of Pharmacognosy, University of Vienna, Vienna, Austria
,
Marko D. Mihovilovic
3   Institute of Applied Synthetic Chemistry, Vienna University of Technology, Vienna, Austria
,
Verena M. Dirsch
1   Department of Pharmacognosy, University of Vienna, Vienna, Austria
,
Judith M. Rollinger
1   Department of Pharmacognosy, University of Vienna, Vienna, Austria
2   Institute of Pharmacy/Pharmacognosy, University of Innsbruck, Innsbruck, Austria
› Author Affiliations
Further Information

Publication History

received 12 March 2015
revised 01 May 2015

accepted 05 May 2015

Publication Date:
01 July 2015 (online)

Abstract

Successful vascular healing after percutaneous coronary interventions is related to the inhibition of abnormal vascular smooth muscle cell proliferation and efficient re-endothelialization. In the search for vascular smooth muscle cell anti-proliferative agents from natural sources we identified piperine (1), the main pungent constituent of the fruits from Piper nigrum (black pepper). Piperine inhibited vascular smooth muscle cell proliferation with an IC50 of 21.6 µM, as quantified by a resazurin conversion assay. Investigations of ten piperamides isolated from black pepper fruits and 15 synthesized piperine derivatives resulted in the identification of three potent vascular smooth muscle cell proliferation inhibitors: the natural alkaloid pipertipine (4), and the two synthetic derivatives (2E,4E)-N,N-dibutyl-5-(3,5-dimethoxyphenyl)penta-2,4-dienamide (14) and (E)-N,N-dibutyl-3-(naphtho[2,3-d][1,3]dioxol-5-yl)acrylamide (20). They showed IC50 values of 3.38, 6.00, and 7.85 µM, respectively. Furthermore, the synthetic compound (2E,4E)-5-(4-fluorophenyl)-1-(piperidin-1-yl)penta-2,4-dien-1-one (12) was found to be cell type selective, by inhibiting vascular smooth muscle cell proliferation with an IC50 of 11.8 µM without influencing the growth of human endothelial cells.

* Dedicated to Professor Dr. Dr. h. c. mult. Adolf Nahrstedt on the occasion of his 75th birthday.


# These authors contributed equally to this work.


 
  • References

  • 1 Lusis AJ. Atherosclerosis. Nature 2000; 407: 233-241
  • 2 Rudijanto A. The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis. Acta Med Indones 2007; 39: 86-93
  • 3 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801-809
  • 4 Katz G, Harchandani B, Shah B. Drug-eluting stents: the past, present, and future. Curr Atheroscler Rep 2015; 17: 11
  • 5 Windecker S, Remondino A, Eberli FR, Juni P, Raber L, Wenaweser P, Togni M, Billinger M, Tuller D, Seiler C, Roffi M, Corti R, Sutsch G, Maier W, Luscher T, Hess OM, Egger M, Meier B. Sirolimus-eluting and paclitaxel-eluting stents for coronary revascularization. N Engl J Med 2005; 353: 653-662
  • 6 Raja SG. Drug-eluting stents and the future of coronary artery bypass surgery: facts and fiction. Ann Thorac Surg 2006; 81: 1162-1171
  • 7 Degertekin M, Serruys PW, Foley DP, Tanabe K, Regar E, Vos J, Smits PC, van der Giessen WJ, van den Brand M, de Feyter P, Popma JJ. Persistent inhibition of neointimal hyperplasia after sirolimus-eluting stent implantation: long-term (up to 2 years) clinical, angiographic, and intravascular ultrasound follow-up. Circulation 2002; 106: 1610-1613
  • 8 Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G, Airoldi F, Chieffo A, Montorfano M, Carlino M, Michev I, Corvaja N, Briguori C, Gerckens U, Grube E, Colombo A. Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. Jama 2005; 293: 2126-2130
  • 9 Mehilli J, Byrne RA, Tiroch K, Pinieck S, Schulz S, Kufner S, Massberg S, Laugwitz KL, Schömig A, Kastrati A. Randomized trial of paclitaxel- versus sirolimus-eluting stents for treatment of coronary restenosis in sirolimus-eluting stents: the ISAR-DESIRE 2 (intracoronary stenting and angiographic results: drug eluting stents for in-stent restenosis 2) study. J Am Coll Cardiol 2010; 55: 2710-2716
  • 10 Jagella T, Grosch W. Flavour and off-flavour compounds of black and white pepper (Piper nigrum L.) I. Evaluation of potent odorants of black pepper by dilution and concentration techniques. Eur Food Res Technol 1999; 209: 16-21
  • 11 Meghwal M, Goswami TK. Piper nigrum and Piperine: an update. Phytother Res 2013; 27: 1121-1130
  • 12 Vasavirama K, Upender M. Piperine: a valuable alkaloid from Piper species. Int J Pharm Pharm Sci 2014; 6: 34-38
  • 13 Labruyère B. Determination of pungent constituents of Piper nigrum . J Agr Food Chem 1966; 14: 469-472
  • 14 Srinivasan K. Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Crit Rev Food Sci Nutr 2007; 47: 735-748
  • 15 Dawid C, Henze A, Frank O, Glabasnia A, Rupp M, Büning K, Orlikowski D, Bader M, Hofmann T. Structural and sensory characterization of key pungent and tingling compounds from black pepper (Piper nigrum L.). J Agric Food Chem 2012; 60: 2884-2895
  • 16 Meghwal M, Goshwami T. Chemical composition, nutritional, medicinal and functional properties of black pepper: A review. Open Access Sci Rep 2012; 1: 1-5
  • 17 OʼMahony R, Al-Khtheeri H, Weerasekera D, Fernando N, Vaira D, Holton J, Basset C. Bactericidal and anti-adhesive properties of culinary and medicinal plants against Helicobacter pylori . World J Gastroenterol 2005; 11: 7499-7507
  • 18 Agbor GA, Vinson JA, Oben JE, Ngogang JY. Comparative analysis of the in vitro antioxidant activity of white and black pepper. Nutr Res 2006; 26: 659-663
  • 19 Singh VK, Singh P, Patel AMA, Yadav KKM. Piperine: delightful surprise to the biological world, made by plant “pepper” and a great bioavailability enhancer for our drugs and supplements. World J Pharm Res 2014; 3: 2084-2098
  • 20 Jiang ZY, Liu WF, Zhang XM, Luo J, Ma YB, Chen JJ. Anti-HBV active constituents from Piper longum . Bioorg Med Chem Lett 2013; 23: 2123-2127
  • 21 Zaugg J, Baburin I, Strommer B, Kim HJ, Hering S, Hamburger M. HPLC-based activity profiling: discovery of piperine as a positive GABA(A) receptor modulator targeting a benzodiazepine-independent binding site. J Nat Prod 2010; 73: 185-191
  • 22 Lee KP, Lee K, Park WH, Kim H, Hong H. Piperine inhibits platelet-derived growth factor-BB-induced proliferation and migration in vascular smooth muscle cells. J Med Food 2015; 18: 208-215
  • 23 Subehan. Usia T, Kadota S, Tezuka Y. Alkamides from Piper nigrum L. and their inhibitory activity against human liver microsomal cytochrome P450 2D6 (CYP2D6). Nat Prod Commun 2006; 1: 1-7
  • 24 Okumura Y, Narukawa M, Iwasaki Y, Ishikawa A, Matsuda H, Yoshikawa M, Watanabe T. Activation of TRPV1 and TRPA1 by black pepper components. Biosci Biotechnol Biochem 2010; 74: 1068-1072
  • 25 Siddiqui BS, Gulzar T, Begum S. Amides from the seeds of Piper nigrum Linn. and their insecticidal activity. Heterocycles 2002; 57: 1653-1658
  • 26 Lee SW, Rho MC, Park HR, Choi JH, Kang JY, Lee JW, Kim K, Lee HS, Kim YK. Inhibition of diacylglycerol acyltransferase by alkamides isolated from the fruits of Piper longum and Piper nigrum . J Agric Food Chem 2006; 54: 9759-9763
  • 27 Wei K, Li W, Koike K, Pei Y, Chen Y, Nikaido T. New amide alkaloids from the roots of Piper nigrum . J Nat Prod 2004; 67: 1005-1009
  • 28 Wei K, Li W, Koike K, Chen Y, Nikaido T. Nigramides AS, dimeric amide alkaloids from the roots of Piper nigrum . J Org Chem 2005; 70: 1164-1176
  • 29 Inatani R, Nakatani N, Fuwa H. Structure and synthesis of new phenolic amides from Piper nigrum L. Agric Biol Chem 1981; 45: 667-673
  • 30 Strunz GM, Finlay H. Concise, efficient new synthesis of pipercide an insecticidal unsaturated amide from Piper nigrum and related compounds. Tetrahedron 1994; 50: 11113-11122
  • 31 Rukachaisirikul T, Prabpai S, Champung P, Suksamram A. Chabamide, a novel piperine dimer from stems of Piper chaba . Planta Med 2002; 68: 853-855
  • 32 Correa EA, Hogestatt ED, Sterner O, Echeverri F, Zygmunt PM. In vitro TRPV1 activity of piperine derived amides. Bioorg Med Chem Lett 2010; 18: 3299-3306
  • 33 Schoffmann A, Wimmer L, Goldmann D, Khom S, Hintersteiner J, Baburin I, Schwarz T, Hintersteininger M, Pakfeifer P, Oufir M, Hamburger M, Erker T, Ecker GF, Mihovilovic MD, Hering S. Efficient modulation of gamma-aminobutyric acid type A receptors by piperine derivatives. J Med Chem 2014; 57: 5602-5619
  • 34 Khom S, Strommer B, Schoffmann A, Hintersteiner J, Baburin I, Erker T, Schwarz T, Schwarzer C, Zaugg J, Hamburger M, Hering S. GABAA receptor modulation by piperine and a non-TRPV1 activating derivative. Biochem Pharmacol 2013; 85: 1827-1836
  • 35 Sahu PK, Sharma A, Rayees S, Kour G, Singhi A, Khullar M, Magotra A, Paswan SK, Gupta M, Ahmed I, Roy S, Tikoo MK, Sharma SC, Singh S, Singh G. Pharmacokinetic study of Piperine in wistar rats after oral and intravenous administration. Int J Drug Delivery 2014; 6: 82-87
  • 36 Bhardwaj RK, Glaeser H, Becquemont L, Klotz U, Gupta SK, Fromm MF. Piperine, a major constituent of black pepper, inhibits human P-glycoprotein and CYP3A4. J Pharmacol Exp Ther 2002; 302: 645-650
  • 37 Khatri S, Ahmed FJ, Rai P. Formulation and evaluation of floating gastroretentive capsules of acyclovir with piperine as a bioenhancer. Pharma Innovation 2015; 3: 78-81
  • 38 Motiwala MN, Rangari VD. The effect of piperine on oral bioavailability and pharmacokinetics of paclitaxel in rats. Int J Pharm Phytopharm Res 2014; 3: 399-403
  • 39 Wadhwa S, Singhal S, Rawat S. Bioavailability enhancement by piperine: a review. Asian J Biomed Pharm Sci 2014; 4: 1-8
  • 40 Kumar S, Singhal V, Roshan R, Sharma A, Rembhotkar GW, Ghosh B. Piperine inhibits TNF-alpha induced adhesion of neutrophils to endothelial monolayer through suppression of NF-kappaB and IkappaB kinase activation. Eur J Pharmacol 2007; 575: 177-186
  • 41 Wimmer L, Schonbauer D, Pakfeifer P, Schoffmann A, Khom S, Hering S, Mihovilovic MD. Developing piperine towards TRPV1 and GABAA receptor ligands – synthesis of piperine analogs via Heck-coupling of conjugated dienes. Org Biomol Chem 2015; 13: 990-994
  • 42 Schiller HB, Szekeres A, Binder BR, Stockinger H, Leksa V. Mannose 6-phosphate/insulin-like growth factor 2 receptor limits cell invasion by controlling alphaVbeta3 integrin expression and proteolytic processing of urokinase-type plasminogen activator receptor. Mol Biol Cell 2009; 20: 745-756
  • 43 Fakhrudin N, Waltenberger B, Cabaravdic M, Atanasov AG, Malainer C, Schachner D, Heiss EH, Liu R, Noha SM, Grzywacz AM, Mihaly-Bison J, Awad EM, Schuster D, Breuss JM, Rollinger JM, Bochkov V, Stuppner H, Dirsch VM. Identification of plumericin as a potent new inhibitor of the NF-kappaB pathway with anti-inflammatory activity in vitro and in vivo . Br J Pharmacol 2014; 171: 1676-1686
  • 44 Kurin E, Atanasov AG, Donath O, Heiss EH, Dirsch VM, Nagy M. Synergy study of the inhibitory potential of red wine polyphenols on vascular smooth muscle cell proliferation. Planta Med 2012; 78: 772-778
  • 45 Joa H, Vogl S, Atanasov AG, Zehl M, Nakel T, Fakhrudin N, Heiss EH, Picker P, Urban E, Wawrosch C, Saukel J, Reznicek G, Kopp B, Dirsch VM. Identification of ostruthin from Peucedanum ostruthium rhizomes as an inhibitor of vascular smooth muscle cell proliferation. J Nat Prod 2011; 74: 1513-1516
  • 46 Liu R, Heiss EH, Sider N, Schinkovitz A, Groblacher B, Guo D, Bucar F, Bauer R, Dirsch VM, Atanasov AG. Identification and characterization of [6]-shogaol from ginger as inhibitor of vascular smooth muscle cell proliferation. Mol Nutr Food Res 2015; 59: 843-852
  • 47 Schwaiberger AV, Heiss EH, Cabaravdic M, Oberan T, Zaujec J, Schachner D, Uhrin P, Atanasov AG, Breuss JM, Binder BR, Dirsch VM. Indirubin-3′-monoxime blocks vascular smooth muscle cell proliferation by inhibition of signal transducer and activator of transcription 3 signaling and reduces neointima formation in vivo . Arterioscler Thromb Vasc Biol 2010; 30: 2475-2481
  • 48 Blažević T, Schwaiberger AV, Schreiner CE, Schachner D, Schaible AM, Grojer CS, Atanasov AG, Werz O, Dirsch VM, Heiss EH. 12/15-lipoxygenase contributes to platelet-derived growth factor-induced activation of signal transducer and activator of transcription 3. J Biol Chem 2013; 288: 35592-35603
  • 49 Liu R, Heiss EH, Guo D, Dirsch VM, Atanasov AG. Capsaicin from chili (Capsicum spp.) inhibits vascular smooth muscle cell proliferation. F1000Res 2015; 4: 26
  • 50 Sepp A, Binns RM, Lechler RI. Improved protocol for colorimetric detection of complement-mediated cytotoxicity based on the measurement of cytoplasmic lactate dehydrogenase activity. J Immunol Methods 1996; 196: 175-180