Der Klinikarzt 2015; 44(2): 90-95
DOI: 10.1055/s-0035-1547508
Schwerpunkt
© Georg Thieme Verlag Stuttgart · New York

Prognostische und prädiktive Faktoren beim Mammakarzinom – Welche Biomarker sind wichtig?

Prognostic and predictive factors in breast cancer – Which biomarkers are important?
Cornelia Liedtke
1   Klinik für Frauenheilkunde und Geburtshilfe, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck
,
Marcus Schmidt
2   Abteilung für Konservative und Molekulare Gynäkologische Onkologie, Klinik und Poliklinik für Geburtshilfe und Frauenkrankheiten, Universitätsmedizin Mainz, Mainz
› Author Affiliations
Further Information

Publication History

Publication Date:
10 March 2015 (online)

Zur Festlegung einer (systemischen) Therapie bei Patientinnen mit Mammakarzinom ist die Kenntnis/Erhebung verschiedener Biomarker wichtig. Diese Biomarker werden in prognostische und prädiktive Biomarker unterteilt.

Zur Festlegung der adjuvanten Therapie beim Mammakarzinom ist eine möglichst genaue Abschätzung der Prognose essentiell. Neben etablierten klinisch-pathologischen Prognosefaktoren wie Tumorgröße, Nodalstatus und histologischem Differenzierungsgrad spielen auch tumorbiologisch definierte Prognosefaktoren wie Ki-67, der human epidermal growth factor-2 (HER2), Östrogenrezeptor (ER) und Progesteronrezeptor (PR) sowie urokinase-Plasminogen-Aktivator (uPA) und Plasminogen-Aktivator-Inhibitor-1 (PAI-1) eine wichtige Rolle. In der letzten Dekade sind Genexpressionssignaturen in den Fokus des Interesses gerückt. Um eine ungenaue Risikoklassifikation und damit eine mögliche Unter- oder Übertherapie der Patientinnen zu vermeiden, müssen sorgfältige klinische Validierungen sowie ein hoher Level of Evidence (LoE) gefordert werden.

Im Gegensatz hierzu erlauben prädiktive Biomarker eine Abschätzung der Wirksamkeit einer spezifischen Therapie. Neben klassischen Parametern wie dem Hormonrezeptorstatus (zur Vorhersage der Wirksamkeit einer endokrinen Therapie) und dem HER2/neu-Status (zur Indikation einer HER2-zielgerichteten Therapie) ist die Entwicklung spezifischer prädiktiver Biomarker für ein Ansprechen beispielsweise auf spezifische Chemotherapie noch nicht weit fortgeschritten. Ein wichtiger, in diesem Kontext diskutierter Parameter ist das Vorkommen einer BRCA1/2-Mutation.

In order to decide on a (systemic) therapy for patients with breast cancer it is necessary to know and/or determine the various biomarkers. These biomarkers are classified as prognostic and predictive biomarkers.

In order to select an adjuvant therapy for breast cancer an exact as possible prognosis is necessary. Beside the established clinical-pathological prognostic factors such as tumor size, node status and histological degree of differentiation, defined tumor biological prognostic factors such as Ki-67, human epidermal growth factor-2 (HER2), estrogen receptor (ER) and progesterone receptor (PR) as well as urokinase-plasminogen-activator (uPA) and plasminogen-activator-inhibitor-1 (PAI-1) play important roles. In the last decade gene expression signatures have emerged as a focus of interest. In order to avoid an imprecise risk classification and thus a possible under- or overtreatment for the patient diligent clinical validation and a high level of evidence (LoE) are required.

In contrast to this, predictive biomarkers allow for an estimation of the efficacy of a specific therapy. Apart from classical parameters such as hormone receptor status (to predict the efficacy of an endocrine therapy) and the HER2/neu status (as indication for an HER2-targeted therapy), the development of specific predictive biomarkers for a response to, for example, a specific chemotherapy has not made much progress. In this context, the occurrence of a BRCA1/2 mutation is a much discussed topic.

 
  • Literatur

  • 1 Liedtke C, Thill M, Hanf V, Schütz F. AGO Recommendations for the Diagnosis and Treatment of Patients with Early Breast Cancer: Update 2014. Breast Care (Basel) 2014; 9: 189-200
  • 2 Harbeck N, Schmitt M, Meisner C, Friedel C, Untch M et al. Ten-year analysis of the prospective multicentre Chemo-N0 trial validates American Society of Clinical Oncology (ASCO)-recommended biomarkers uPA and PAI-1 for therapy decision making in node-negative breast cancer patients. Eur J Cancer 2013; 49: 1825-1835
  • 3 Goldhirsch A, Winer EP, Coates AS et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 2013; 24: 2206-2223
  • 4 Perou CM, Sørlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747-752
  • 5 Varga Z, Diebold J, Dommann-Scherrer C et al. How reliable is Ki-67 immunohistochemistry in grade 2 breast carcinomas? A QA study of the Swiss Working Group of Breast- and Gynecopathologists. PLoS ONE 2012; 7
  • 6 Peto R, Davies C, Godwin J et al. Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet 2012; 379: 432-444
  • 7 Hayes DF, Bast RC, Desch CE et al. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J Natl Cancer Inst 1996; 88: 1456-1466
  • 8 Simon RM, Paik S, Hayes DF. Use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst 2009; 101
  • 9 Parker JS, Mullins M, Cheang MCU et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009; 27: 1160-1167
  • 10 van t Veer LJ, Dai H, van de Vijver MJ et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530-536
  • 11 van de Vijver MJ, He YD, van t Veer LJ et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999-2009
  • 12 Paik S, Shak S, Tang G et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004; 351: 2817-2826
  • 13 Paik S, Tang G, Shak S et al. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer. J Clin Oncol 2006; 24: 3726-3734
  • 14 Denkert C, Kronenwett R, Schlake W et al. Decentral gene expression analysis for ER+/Her2- breast cancer: results of a proficiency testing program for the EndoPredict assay. Virchows Arch 2012; 460: 251-259
  • 15 Filipits M, Rudas M, Jakesz R et al. A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res 2011; 17: 6012-6020
  • 16 Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 2011; 378: 1812-1823
  • 17 Schmidt M, Hengstler JG, Törne C et al. Coordinates in the universe of node-negative breast cancer revisited. Cancer Res 2009; 69: 2695-2698
  • 18 Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61-70
  • 19 Perou CM, Sorlie T, Eisen MB et al. Molecular portraits of human breast tumours. Nature 2000; 406: 747-752
  • 20 Harbeck N, Schmitt M, Meisner C et al. Ten-year analysis of the prospective multicentre Chemo-N0 trial validates American Society of Clinical Oncology (ASCO)-recommended biomarkers uPA and PAI-1 for therapy decision making in node-negative breast cancer patients. Eur J Cancer 2013; 49: 1825-1835
  • 21 Lucci A, Hall CS, Lodhi AK et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol 2012; 13: 688-695
  • 22 Pachmann K, Camara O, Kavallaris A et al. Monitoring the response of circulating epithelial tumor cells to adjuvant chemotherapy in breast cancer allows detection of patients at risk of early relapse. J Clin Oncol 2008; 26: 1208-1215
  • 23 Braun S, Vogl FD, Naume B et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 2005; 353: 793-802
  • 24 Janni W, Vogl FD, Wiedswang G et al. Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse – a European pooled analysis. Clin Cancer Res 2011; 17: 2967-2976
  • 25 Janni W, Rack B, Terstappen LW et al. A pooled analysis of the prognostic relevance of circulating tumor cells in early breast cancer. Cancer Research 2013; 73 (Suppl. 24)
  • 26 Rack B, Schindlbeck C, Juckstock J et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. J Natl Cancer Inst 2014; 106
  • 27 Cristofanilli M, Budd GT, Ellis MJ et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004; 351: 781-791
  • 28 Bidard FC, Peeters DJ, Fehm T et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 2014; 15: 406-414
  • 29 Early Breast Cancer Trialists' Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365: 1687-1717
  • 30 Ferretti G, Felici A, Papaldo P et al. HER2/neu role in breast cancer: from a prognostic foe to a predictive friend. Curr Opin Obstet Gynecol 2007; 19: 56-62
  • 31 Romond EH, Perez EA, Bryant J et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353: 1673-1684
  • 32 Slamon DJ, Leyland-Jones B, Shak S et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001; 344: 783-792
  • 33 Denkert C, Blohmer JU, Müller BM et al. Ki67 levels in pretherapeutic core biopsies as predictive and prognostic parameters in the neoadjuvant GeparTrio trialSAN Antonio Breast Cancer Symposium. 2012;
  • 34 von Minckwitz G, Schneeweiss A, Loibl S et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol 2014; 15: 747-756
  • 35 Sikov WM, Berry DA, Perou CM et al. Impact of the Addition of Carboplatin and/or Bevacizumab to Neoadjuvant Once-per-Week Paclitaxel Followed by Dose-Dense Doxorubicin and Cyclophosphamide on Pathologic Complete Response Rates in Stage II to III Triple-Negative Breast Cancer: CALGB 40603 (Alliance). J Clin Oncol 2015; 33: 13-21
  • 36 Von Minckwitz G, Hahnen E, Fasching PA et al. Pathological complete response (pCR) rates after carboplatin-containing neoadjuvant chemotherapy in patients with germline BRCA (gBRCA) mutation and triple-negative breast cancer (TNBC): Results from GeparSixto. J Clin Oncol 2014; 32
  • 37 Paluch-Shimon S, Friedman E, Berger R et al. Does pathologic complete response predict for outcome in BRCA mutation carriers with triple-negative breast cancer?. J Clin Oncol 2014; 32
  • 38 Denkert C, Loibl S, Salat C et al. Increased tumor-associated lymphocytes predict benefit from addition of carboplatin to neoadjuvant therapy for triple negative and HER2-positive early breast cancer in the GeparSixto trial (GBG 66). San Antonio Breast Cancer Symposium 2013;
  • 39 Hess KR, Anderson K, Symmans WF et al. Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 2006; 24: 4236-4244
  • 40 Bonnefoi H, Potti A, Delorenzi M et al. Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00–01clinical trial. Lancet Oncol 2007; 8: 1071-1078