Int Arch Otorhinolaryngol 2015; 19(03): 259-265
DOI: 10.1055/s-0035-1548671
Systematic Review
Thieme Publicações Ltda Rio de Janeiro, Brazil

Tinnitus Neural Mechanisms and Structural Changes in the Brain: The Contribution of Neuroimaging Research

Patricia Simonetti
1   Department of Otolaryngology, School of Medicine, University of São Paulo, Brazil
,
Jeanne Oiticica
1   Department of Otolaryngology, School of Medicine, University of São Paulo, Brazil
› Author Affiliations
Further Information

Publication History

18 November 2014

09 February 2015

Publication Date:
30 March 2015 (online)

Abstract

Introduction Tinnitus is an abnormal perception of sound in the absence of an external stimulus. Chronic tinnitus usually has a high impact in many aspects of patients' lives, such as emotional stress, sleep disturbance, concentration difficulties, and so on. These strong reactions are usually attributed to central nervous system involvement. Neuroimaging has revealed the implication of brain structures in the auditory system.

Objective This systematic review points out neuroimaging studies that contribute to identifying the structures involved in the pathophysiological mechanism of generation and persistence of various forms of tinnitus.

Data Synthesis Functional imaging research reveals that tinnitus perception is associated with the involvement of the nonauditory brain areas, including the front parietal area; the limbic system, which consists of the anterior cingulate cortex, anterior insula, and amygdala; and the hippocampal and parahippocampal area.

Conclusion The neuroimaging research confirms the involvement of the mechanisms of memory and cognition in the persistence of perception, anxiety, distress, and suffering associated with tinnitus.

 
  • References

  • 1 House JW, Brackmann DE. Tinnitus: surgical treatment. Ciba Found Symp 1981; 85: 204-216
  • 2 Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 1990; 8 (4) 221-254
  • 3 Eggermont JJ, Roberts LE. The neuroscience of tinnitus. Trends Neurosci 2004; 27 (11) 676-682
  • 4 Eggermont JJ, Roberts LE. The neuroscience of tinnitus: understanding abnormal and normal auditory perception. Front Syst Neurosci 2012; 6: 53
  • 5 Noreña AJ. An integrative model of tinnitus based on a central gain controlling neural sensitivity. Neurosci Biobehav Rev 2011; 35 (5) 1089-1109
  • 6 Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 2011; 31 (38) 13452-13457
  • 7 Engineer ND, Møller AR, Kilgard MP. Directing neural plasticity to understand and treat tinnitus. Hear Res 2013; 295: 58-66
  • 8 Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA. Ringing ears: the neuroscience of tinnitus. J Neurosci 2010; 30 (45) 14972-14979
  • 9 Levine RA. Somatic (craniocervical) tinnitus and the dorsal cochlear nucleus hypothesis. Am J Otolaryngol 1999; 20 (6) 351-362
  • 10 Shore SE. Multisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulation. Eur J Neurosci 2005; 21 (12) 3334-3348
  • 11 Lanting CP, de Kleine E, van Dijk P. Neural activity underlying tinnitus generation: results from PET and fMRI. Hear Res 2009; 255 (1–2) 1-13
  • 12 Davies J, Gander PE, Andrews M, Hall DA. Auditory network connectivity in tinnitus patients: a resting-state fMRI study. Int J Audiol 2014; 53 (3) 192-198
  • 13 Rogers BP, Morgan VL, Newton AT, Gore JC. Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging 2007; 25 (10) 1347-1357
  • 14 Melcher JR, Levine RA, Bergevin C, Norris B. The auditory midbrain of people with tinnitus: abnormal sound-evoked activity revisited. Hear Res 2009; 257 (1–2) 63-74
  • 15 Landgrebe M, Langguth B, Rosengarth K , et al. Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. Neuroimage 2009; 46 (1) 213-218
  • 16 Lockwood AH, Salvi RJ, Coad ML, Towsley ML, Wack DS, Murphy BW. The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology 1998; 50 (1) 114-120
  • 17 Simmons R, Dambra C, Lobarinas E, Stocking C, Salvi R. Head, Neck, and Eye Movements That Modulate Tinnitus. Semin Hear 2008; 29 (4) 361-370
  • 18 Giraud AL, Chéry-Croze S, Fischer G , et al. A selective imaging of tinnitus. Neuroreport 1999; 10 (1) 1-5
  • 19 Arnold W, Bartenstein P, Oestreicher E, Römer W, Schwaiger M. Focal metabolic activation in the predominant left auditory cortex in patients suffering from tinnitus: a PET study with [18F]deoxyglucose. ORL J Otorhinolaryngol Relat Spec 1996; 58 (4) 195-199
  • 20 Husain FT, Pajor NM, Smith JF , et al. Discrimination task reveals differences in neural bases of tinnitus and hearing impairment. PLoS ONE 2011; 6 (10) e26639
  • 21 Boyen K, de Kleine E, van Dijk P, Langers DR. Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss. Hear Res 2014; 312: 48-59
  • 22 Mühlau M, Rauschecker JP, Oestreicher E , et al. Structural brain changes in tinnitus. Cereb Cortex 2006; 16 (9) 1283-1288
  • 23 Leaver AM, Renier L, Chevillet MA, Morgan S, Kim HJ, Rauschecker JP. Dysregulation of limbic and auditory networks in tinnitus. Neuron 2011; 69 (1) 33-43
  • 24 Mirz F, Pedersen B, Ishizu K , et al. Positron emission tomography of cortical centers of tinnitus. Hear Res 1999; 134 (1–2) 133-144
  • 25 Seydell-Greenwald A, Leaver AM, Turesky TK, Morgan S, Kim HJ, Rauschecker JP. Functional MRI evidence for a role of ventral prefrontal cortex in tinnitus. Brain Res 2012; 1485: 22-39
  • 26 Leaver AM, Seydell-Greenwald A, Turesky TK, Morgan S, Kim HJ, Rauschecker JP. Cortico-limbic morphology separates tinnitus from tinnitus distress. Front Syst Neurosci 2012; 6: 21
  • 27 Schecklmann M, Landgrebe M, Poeppl TB , et al. Neural correlates of tinnitus duration and distress: a positron emission tomography study. Hum Brain Mapp 2013; 34 (1) 233-240
  • 28 Kim JY, Kim YH, Lee S , et al. Alteration of functional connectivity in tinnitus brain revealed by resting-state fMRI? A pilot study. Int J Audiol 2012; 51 (5) 413-417
  • 29 Burton H, Wineland A, Bhattacharya M, Nicklaus J, Garcia KS, Piccirillo JF. Altered networks in bothersome tinnitus: a functional connectivity study. BMC Neurosci 2012; 13: 3
  • 30 Schmidt SA, Akrofi K, Carpenter-Thompson JR, Husain FT. Default mode, dorsal attention and auditory resting state networks exhibit differential functional connectivity in tinnitus and hearing loss. PLoS ONE 2013; 8 (10) e76488
  • 31 Maudoux A, Lefebvre P, Cabay JE , et al. Connectivity graph analysis of the auditory resting state network in tinnitus. Brain Res 2012; 1485: 10-21
  • 32 Song JJ, De Ridder D, Van de Heyning P, Vanneste S. Mapping tinnitus-related brain activation: an activation-likelihood estimation metaanalysis of PET studies. J Nucl Med 2012; 53 (10) 1550-1557
  • 33 Langguth B, Schecklmann M, Lehner A , et al. Neuroimaging and neuromodulation: complementary approaches for identifying the neuronal correlates of tinnitus. Front Syst Neurosci 2012; 6: 15
  • 34 De Ridder D, Elgoyhen AB, Romo R, Langguth B. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A 2011; 108 (20) 8075-8080
  • 35 Elgoyhen AB, Langguth B, Vanneste S, De Ridder D. Tinnitus: network pathophysiology-network pharmacology. Front Syst Neurosci 2012; 6: 1
  • 36 Plewnia C, Reimold M, Najib A , et al. Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Hum Brain Mapp 2007; 28 (3) 238-246
  • 37 Schlee W, Weisz N, Bertrand O, Hartmann T, Elbert T. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS ONE 2008; 3 (11) e3720
  • 38 Rubinstein B, Axelsson A, Carlsson GE. Prevalence of signs and symptoms of craniomandibular disorders in tinnitus patients. J Craniomandib Disord 1990; 4 (3) 186-192
  • 39 Pinchoff RJ, Burkard RF, Salvi RJ, Coad ML, Lockwood AH. Modulation of tinnitus by voluntary jaw movements. Am J Otol 1998; 19 (6) 785-789
  • 40 Shore S, Zhou J, Koehler S. Neural mechanisms underlying somatic tinnitus. Prog Brain Res 2007; 166: 107-123
  • 41 Andersson G, Lyttkens L, Hirvelä C, Furmark T, Tillfors M, Fredrikson M. Regional cerebral blood flow during tinnitus: a PET case study with lidocaine and auditory stimulation. Acta Otolaryngol 2000; 120 (8) 967-972
  • 42 van Gendt MJ, Boyen K, de Kleine E, Langers DR, van Dijk P. The relation between perception and brain activity in gaze-evoked tinnitus. J Neurosci 2012; 32 (49) 17528-17539