J Knee Surg 2016; 29(03): 242-247
DOI: 10.1055/s-0035-1549022
Original Article
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Identification of Synovial Fluid Biomarkers for Knee Osteoarthritis and Correlation with Radiographic Assessment

Farrah Monibi
1   Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri
,
Brandon L. Roller
2   Arthrex, Inc., Naples, Florida
,
Aaron Stoker
1   Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri
,
Bridget Garner
4   Missouri Orthopaedic Institute, Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
,
Sonny Bal
5   Department of Orthopaedic Surgery, University of Missouri, Orthopaedic Institute Columbia, Missouri
,
James L. Cook
1   Comparative Orthopaedic Laboratory, University of Missouri, Columbia, Missouri
4   Missouri Orthopaedic Institute, Department of Orthopaedic Surgery, University of Missouri, Columbia, Missouri
› Author Affiliations
Further Information

Publication History

09 September 2014

10 February 2015

Publication Date:
30 April 2015 (online)

Abstract

Osteoarthritis (OA) is a costly and debilitating condition that is typically not diagnosed early enough to prevent progression of disease. The purpose of this study was to evaluate synovial fluid from knees with and without OA for potential markers of joint inflammation and degradation and to correlate these findings with radiographic severity of disease. With Institutional Review Board approval, synovial fluid samples were collected before the patient undergoing total knee arthroplasty. Control knees (n = 3) were patients younger than 30 years of age with no history of anterior cruciate ligament, posterior cruciate ligament, or meniscal injury, and no surgical history for either knee. Weight-bearing, anterior–posterior radiographic views were used to determine radiographic OA severity using the modified Kellgren and Lawrence scale. Synovial fluid samples from 18 patients (21 knees) were analyzed using a multiplex assay. Matrix metalloproteinase (MMP)-1 (p < 0.001), interleukin (IL)-6 (p < 0.013), IL-8 (p < 0.024), and Chemokine (C-C motif) ligand 5 (CCL5) (p < 0.006) were significantly higher in the synovial fluid of OA patients compared with normal patients. The radiographic score was significantly higher in patients with OA compared with normal knees (p < 0.002). MMP-1 had a moderate positive correlation with MMP-2, IL-6, IL-8, and CCL5. IL-6 had a strong positive correlation with IL-8 and a moderate positive correlation with MMP-2. Monocyte chemotactic protein 1 had a moderate positive correlation with IL-6 and a strong positive correlation with IL-8. Radiographic scores had a strong positive correlation with IL-6 and IL-8 and a moderate positive correlation with MCP-1. These data provide novel and clinically relevant information for the investigation of synovial fluid biomarkers for knee OA.

Note

This is the final in a series of four articles.


 
  • References

  • 1 Mili F, Helmick CG, Zack MM. Prevalence of arthritis: analysis of data from the US behavioral risk factor surveillance system, 1996–99. J Rheumatol 2002; 29 (9) 1981-1988
  • 2 Kotlarz H, Gunnarsson CL, Fang H, Rizzo JA. Insurer and out-of-pocket costs of osteoarthritis in the US: evidence from national survey data. Arthritis Rheum 2009; 60 (12) 3546-3553
  • 3 Goldring MB. The role of cytokines as inflammatory mediators in osteoarthritis: lessons from animal models. Connect Tissue Res 1999; 40 (1) 1-11
  • 4 Ray A, Kuroki K, Cook JL , et al. Induction of matrix metalloproteinase 1 gene expression is regulated by inflammation-responsive transcription factor SAF-1 in osteoarthritis. Arthritis Rheum 2003; 48 (1) 134-145
  • 5 Kuroki K, Stoker AM, Cook JL. Effects of proinflammatory cytokines on canine articular chondrocytes in a three-dimensional culture. Am J Vet Res 2005; 66 (7) 1187-1196
  • 6 Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol 2007; 213 (3) 626-634
  • 7 Scanzello CR, Plaas A, Crow MK. Innate immune system activation in osteoarthritis: is osteoarthritis a chronic wound?. Curr Opin Rheumatol 2008; 20 (5) 565-572
  • 8 Borden P, Solymar D, Sucharczuk A, Lindman B, Cannon P, Heller RA. Cytokine control of interstitial collagenase and collagenase-3 gene expression in human chondrocytes. J Biol Chem 1996; 271 (38) 23577-23581
  • 9 Borzì RM, Mazzetti I, Cattini L, Uguccioni M, Baggiolini M, Facchini A. Human chondrocytes express functional chemokine receptors and release matrix-degrading enzymes in response to C-X-C and C-C chemokines. Arthritis Rheum 2000; 43 (8) 1734-1741
  • 10 Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum 2001; 44 (3) 585-594
  • 11 Hulejová H, Baresová V, Klézl Z, Polanská M, Adam M, Senolt L. Increased level of cytokines and matrix metalloproteinases in osteoarthritic subchondral bone. Cytokine 2007; 38 (3) 151-156
  • 12 Klatt AR, Paul-Klausch B, Klinger G , et al. A critical role for collagen II in cartilage matrix degradation: collagen II induces pro-inflammatory cytokines and MMPs in primary human chondrocytes. J Orthop Res 2009; 27 (1) 65-70
  • 13 Lohmander LS, Dahlberg L, Eyre D, Lark M, Thonar EJ, Ryd L. Longitudinal and cross-sectional variability in markers of joint metabolism in patients with knee pain and articular cartilage abnormalities. Osteoarthritis Cartilage 1998; 6 (5) 351-361
  • 14 Pulsatelli L, Dolzani P, Piacentini A , et al. Chemokine production by human chondrocytes. J Rheumatol 1999; 26 (9) 1992-2001
  • 15 Steiner G, Tohidast-Akrad M, Witzmann G , et al. Cytokine production by synovial T cells in rheumatoid arthritis. Rheumatology (Oxford) 1999; 38 (3) 202-213
  • 16 Sugiyama T. Involvement of interleukin-6 and prostaglandin E2 in periarticular osteoporosis of postmenopausal women with rheumatoid arthritis. J Bone Miner Metab 2001; 19 (2) 89-96
  • 17 Irie K, Uchiyama E, Iwaso H. Intraarticular inflammatory cytokines in acute anterior cruciate ligament injured knee. Knee 2003; 10 (1) 93-96
  • 18 Higuchi H, Shirakura K, Kimura M , et al. Changes in biochemical parameters after anterior cruciate ligament injury. Int Orthop 2006; 30 (1) 43-47
  • 19 Cuellar JM, Scuderi GJ, Cuellar VG, Golish SR, Yeomans DC. Diagnostic utility of cytokine biomarkers in the evaluation of acute knee pain. J Bone Joint Surg Am 2009; 91 (10) 2313-2320
  • 20 Scuderi GJ, Woolf N, Dent K , et al. Identification of a complex between fibronectin and aggrecan G3 domain in synovial fluid of patients with painful meniscal pathology. Clin Biochem 2010; 43 (10-11) 808-814
  • 21 Garner BC, Stoker AM, Kuroki K, Evans R, Cook CR, Cook JL. Using animal models in osteoarthritis biomarker research. J Knee Surg 2011; 24 (4) 251-264
  • 22 Dahlberg L, Ryd L, Heinegård D, Lohmander LS. Proteoglycan fragments in joint fluid. Influence of arthrosis and inflammation. Acta Orthop Scand 1992; 63 (4) 417-423
  • 23 Lohmander LS, Hoerrner LA, Lark MW. Metalloproteinases, tissue inhibitor, and proteoglycan fragments in knee synovial fluid in human osteoarthritis. Arthritis Rheum 1993; 36 (2) 181-189
  • 24 Lohmander LS, Ionescu M, Jugessur H, Poole AR. Changes in joint cartilage aggrecan after knee injury and in osteoarthritis. Arthritis Rheum 1999; 42 (3) 534-544
  • 25 Kojima T, Mwale F, Yasuda T, Girard C, Poole AR, Laverty S. Early degradation of type IX and type II collagen with the onset of experimental inflammatory arthritis. Arthritis Rheum 2001; 44 (1) 120-127
  • 26 Lohmander LS, Atley LM, Pietka TA, Eyre DR. The release of crosslinked peptides from type II collagen into human synovial fluid is increased soon after joint injury and in osteoarthritis. Arthritis Rheum 2003; 48 (11) 3130-3139
  • 27 Beekhuizen M, Gierman LM, van Spil WE , et al. An explorative study comparing levels of soluble mediators in control and osteoarthritic synovial fluid. Osteoarthritis Cartilage 2013; 21 (7) 918-922
  • 28 Poole AR, Ionescu M, Fitzcharles MA, Billinghurst RC. The assessment of cartilage degradation in vivo: development of an immunoassay for the measurement in body fluids of type II collagen cleaved by collagenases. J Immunol Methods 2004; 294 (1-2) 145-153
  • 29 Cibere J, Zhang H, Garnero P , et al. Association of biomarkers with pre-radiographically defined and radiographically defined knee osteoarthritis in a population-based study. Arthritis Rheum 2009; 60 (5) 1372-1380
  • 30 Roller BL, Monibi FA, Stoker AM, Kuroki K, Bal BS, Cook JL. Characterization of knee meniscal pathology: correlation of gross, histologic, biochemical, molecular, and radiographic measures of disease. J Knee Surg 2015; 28: 175-182
  • 31 Scott Jr WW, Lethbridge-Cejku M, Reichle R, Wigley FM, Tobin JD, Hochberg MC. Reliability of grading scales for individual radiographic features of osteoarthritis of the knee. The Baltimore longitudinal study of aging atlas of knee osteoarthritis. Invest Radiol 1993; 28 (6) 497-501
  • 32 Sondergaard BC, Schultz N, Madsen SH, Bay-Jensen AC, Kassem M, Karsdal MA. MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation—divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation. Osteoarthritis Cartilage 2010; 18 (3) 279-288
  • 33 Billinghurst RC, Buxton EM, Edwards MG, McGraw MS, McIlwraith CW. Use of an antineoepitope antibody for identification of type-II collagen degradation in equine articular cartilage. Am J Vet Res 2001; 62 (7) 1031-1039
  • 34 van Meurs J, van Lent P, Stoop R , et al. Cleavage of aggrecan at the Asn341-Phe342 site coincides with the initiation of collagen damage in murine antigen-induced arthritis: a pivotal role for stromelysin 1 in matrix metalloproteinase activity. Arthritis Rheum 1999; 42 (10) 2074-2084
  • 35 Huebner JL, Otterness IG, Freund EM, Caterson B, Kraus VB. Collagenase 1 and collagenase 3 expression in a guinea pig model of osteoarthritis. Arthritis Rheum 1998; 41 (5) 877-890
  • 36 Freemont AJ, Hampson V, Tilman R, Goupille P, Taiwo Y, Hoyland JA. Gene expression of matrix metalloproteinases 1, 3, and 9 by chondrocytes in osteoarthritic human knee articular cartilage is zone and grade specific. Ann Rheum Dis 1997; 56 (9) 542-549
  • 37 Billinghurst RC, Dahlberg L, Ionescu M , et al. Enhanced cleavage of type II collagen by collagenases in osteoarthritic articular cartilage. J Clin Invest 1997; 99 (7) 1534-1545
  • 38 Karran EH, Young TJ, Markwell RE, Harper GP. In vivo model of cartilage degradation—effects of a matrix metalloproteinase inhibitor. Ann Rheum Dis 1995; 54 (8) 662-669
  • 39 Mehraban F, Kuo SY, Riera H, Chang C, Moskowitz RW. Prostromelysin and procollagenase genes are differentially up-regulated in chondrocytes from the knees of rabbits with experimental osteoarthritis. Arthritis Rheum 1994; 37 (8) 1189-1197
  • 40 Shingleton WD, Ellis AJ, Rowan AD, Cawston TE. Retinoic acid combines with interleukin-1 to promote the degradation of collagen from bovine nasal cartilage: matrix metalloproteinases-1 and -13 are involved in cartilage collagen breakdown. J Cell Biochem 2000; 79 (4) 519-531
  • 41 Yocum SA, Lopresti-Morrow LL, Reeves LM, Mitchell PG. MMP-13 and MMP-1 expression in tissues of normal articular joints. Ann N Y Acad Sci 1999; 878: 583-586
  • 42 Goupille P, Jayson MI, Valat JP, Freemont AJ. Matrix metalloproteinases: the clue to intervertebral disc degeneration?. Spine 1998; 23 (14) 1612-1626
  • 43 Rübenhagen R, Schüttrumpf JP, Stürmer KM, Frosch KH. Interleukin-7 levels in synovial fluid increase with age and MMP-1 levels decrease with progression of osteoarthritis. Acta Orthop 2012; 83 (1) 59-64
  • 44 Shlopov BV, Lie WR, Mainardi CL, Cole AA, Chubinskaya S, Hasty KA. Osteoarthritic lesions: involvement of three different collagenases. Arthritis Rheum 1997; 40 (11) 2065-2074
  • 45 Gandhi R, Santone D, Takahashi M, Dessouki O, Mahomed NN. Inflammatory predictors of ongoing pain 2 years following knee replacement surgery. Knee 2013; 20 (5) 316-318
  • 46 Tang CH, Hsu CJ, Fong YC. The CCL5/CCR5 axis promotes interleukin-6 production in human synovial fibroblasts. Arthritis Rheum 2010; 62 (12) 3615-3624
  • 47 Scanzello CR, Umoh E, Pessler F , et al. Local cytokine profiles in knee osteoarthritis: elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthritis Cartilage 2009; 17 (8) 1040-1048
  • 48 Seitz M, Loetscher P, Dewald B, Towbin H, Ceska M, Baggiolini M. Production of interleukin-1 receptor antagonist, inflammatory chemotactic proteins, and prostaglandin E by rheumatoid and osteoarthritic synoviocytes—regulation by IFN-gamma and IL-4. J Immunol 1994; 152 (4) 2060-2065
  • 49 Remick DG, DeForge LE, Sullivan JF, Showell HJ. Profile of cytokines in synovial fluid specimens from patients with arthritis. Interleukin 8 (IL-8) and IL-6 correlate with inflammatory arthritides. Immunol Invest 1992; 21 (4) 321-327
  • 50 Pierzchala AW, Kusz DJ, Hajduk G. CXCL8 and CCL5 expression in synovial fluid and blood serum in patients with osteoarthritis of the knee. Arch Immunol Ther Exp (Warsz) 2011; 59 (2) 151-155
  • 51 Livshits G, Zhai G, Hart DJ , et al. Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: The Chingford Study. Arthritis Rheum 2009; 60 (7) 2037-2045
  • 52 Doss F, Menard J, Hauschild M , et al. Elevated IL-6 levels in the synovial fluid of osteoarthritis patients stem from plasma cells. Scand J Rheumatol 2007; 36 (2) 136-139
  • 53 Kaneko S, Satoh T, Chiba J, Ju C, Inoue K, Kagawa J. Interleukin-6 and interleukin-8 levels in serum and synovial fluid of patients with osteoarthritis. Cytokines Cell Mol Ther 2000; 6 (2) 71-79
  • 54 Vangsness Jr CT, Burke WS, Narvy SJ, MacPhee RD, Fedenko AN. Human knee synovial fluid cytokines correlated with grade of knee osteoarthritis—a pilot study. Bull NYU Hosp Jt Dis 2011; 69 (2) 122-127
  • 55 Orita S, Koshi T, Mitsuka T , et al. Associations between proinflammatory cytokines in the synovial fluid and radiographic grading and pain-related scores in 47 consecutive patients with osteoarthritis of the knee. BMC Musculoskelet Disord 2011; 12: 144
  • 56 Waters NP, Stoker AM, Pfeiffer FM, Cook JL. Biomarkers affected by impact severity during osteochondral injury. J Knee Surg 2014; (e-pub ahead of print)
  • 57 Stanczyk J, Kowalski ML, Grzegorczyk J , et al. RANTES and chemotactic activity in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Mediators Inflamm 2005; 2005 (6) 343-348
  • 58 Nakamura H, Tanaka M, Masuko-Hongo K , et al. Enhanced production of MMP-1, MMP-3, MMP-13, and RANTES by interaction of chondrocytes with autologous T cells. Rheumatol Int 2006; 26 (11) 984-990
  • 59 Culvenor AG, Engen CN, Oiestad BE, Engebretsen L, Risberg MA. Defining the presence of radiographic knee osteoarthritis: a comparison between the Kellgren and Lawrence system and OARSI atlas criteria. Knee Surg Sports Traumatol Arthrosc 2014; (e-pub ahead of print)