Semin Thromb Hemost 2015; 41(04): 433-444
DOI: 10.1055/s-0035-1549849
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Coagulase Activity by Staphylococcus aureus: A Potential Target for Therapy?

Marijke Peetermans
1   Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
,
Peter Verhamme
1   Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
,
Thomas Vanassche
1   Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
14. Mai 2015 (online)

Abstract

Staphylococcus aureus is a leading cause of skin and soft tissue infections, foreign body infections, and infective endocarditis. In case of endovascular infection with S. aureus, higher rates of cardiac valve destruction, embolic complications, severe sepsis, and death occur. The unique capacity of S. aureus to induce clotting has been known for over a century; however, its role in virulence has long been controversial. S. aureus secretes two coagulases, staphylocoagulase and von Willebrand factor binding protein that both activate prothrombin to generate fibrin. A better understanding of the molecular mechanisms as well as the new strategies to target the coagulases have highlighted their importance in S. aureus virulence. Coagulase activity is essential for the formation of S. aureus–fibrin–platelet microaggregates and for the homing of S. aureus to the vascular wall under flow. Absence or inhibition of S. aureus coagulase activity improved outcome in disease models of skin infection, sepsis, catheter infection, and endocarditis. Here, we review how the manipulation of the host's hemostatic system contributes to the disease-causing potential of S. aureus and discuss the S. aureus coagulases as promising targets for novel therapeutic strategies.

 
  • References

  • 1 Delvaeye M, Conway EM. Coagulation and innate immune responses: can we view them separately?. Blood 2009; 114 (12) 2367-2374
  • 2 Iwanaga S. The molecular basis of innate immunity in the horseshoe crab. Curr Opin Immunol 2002; 14 (1) 87-95
  • 3 Verhamme P, Hoylaerts MF. Hemostasis and inflammation: two of a kind?. Thromb J 2009; 7: 15
  • 4 Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013; 13 (1) 34-45
  • 5 Mattsson E, Herwald H, Cramer H, Persson K, Sjöbring U, Björck L. Staphylococcus aureus induces release of bradykinin in human plasma. Infect Immun 2001; 69 (6) 3877-3882
  • 6 Bengtson SH, Phagoo SB, Norrby-Teglund A , et al. Kinin receptor expression during Staphylococcus aureus infection. Blood 2006; 108 (6) 2055-2063
  • 7 Puy C, Tucker EI, Wong ZC , et al. Factor XII promotes blood coagulation independent of factor XI in the presence of long-chain polyphosphates. J Thromb Haemost 2013; 11 (7) 1341-1352
  • 8 Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD. Interactions between coagulation and complement—their role in inflammation. Semin Immunopathol 2012; 34 (1) 151-165
  • 9 Yeaman MR. Platelets in defense against bacterial pathogens. Cell Mol Life Sci 2010; 67 (4) 525-544
  • 10 Tang YQ, Yeaman MR, Selsted ME. Antimicrobial peptides from human platelets. Infect Immun 2002; 70 (12) 6524-6533
  • 11 Oehmcke S, Mörgelin M, Malmström J , et al. Stimulation of blood mononuclear cells with bacterial virulence factors leads to the release of pro-coagulant and pro-inflammatory microparticles. Cell Microbiol 2012; 14 (1) 107-119
  • 12 Gould TJ, Vu TT, Swystun LL , et al. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler Thromb Vasc Biol 2014; 34 (9) 1977-1984
  • 13 Dunn DL, Simmons RL. Fibrin in peritonitis. III. The mechanism of bacterial trapping by polymerizing fibrin. Surgery 1982; 92 (3) 513-519
  • 14 Flick MJ, Du X, Degen JL. Fibrin(ogen)-alpha M beta 2 interactions regulate leukocyte function and innate immunity in vivo. Exp Biol Med (Maywood) 2004; 229 (11) 1105-1110
  • 15 Degen JL, Bugge TH, Goguen JD. Fibrin and fibrinolysis in infection and host defense. J Thromb Haemost 2007; 5 (Suppl. 01) 24-31
  • 16 van Goor H, de Graaf JS, Kooi K , et al. Effect of recombinant tissue plasminogen activator on intra-abdominal abscess formation in rats with generalized peritonitis. J Am Coll Surg 1994; 179 (4) 407-411
  • 17 Sun H, Wang X, Degen JL, Ginsburg D. Reduced thrombin generation increases host susceptibility to group A streptococcal infection. Blood 2009; 113 (6) 1358-1364
  • 18 Ichinose A. Factor XIII is a key molecule at the intersection of coagulation and fibrinolysis as well as inflammation and infection control. Int J Hematol 2012; 95 (4) 362-370
  • 19 Loof TG, Mörgelin M, Johansson L , et al. Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. Blood 2011; 118 (9) 2589-2598
  • 20 Krisinger MJ, Goebeler V, Lu Z , et al. Thrombin generates previously unidentified C5 products that support the terminal complement activation pathway. Blood 2012; 120 (8) 1717-1725
  • 21 Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 1999; 103 (6) 879-887
  • 22 Xiong YQ, Bayer AS, Yeaman MR. Inhibition of intracellular macromolecular synthesis in Staphylococcus aureus by thrombin-induced platelet microbicidal proteins. J Infect Dis 2002; 185 (3) 348-356
  • 23 Lowy FD. Staphylococcus aureus infections. N Engl J Med 1998; 339 (8) 520-532
  • 24 Keynan Y, Rubinstein E. Staphylococcus aureus bacteremia, risk factors, complications, and management. Crit Care Clin 2013; 29 (3) 547-562
  • 25 Hill EE, Herijgers P, Claus P, Vanderschueren S, Peetermans WE, Herregods MC. Clinical and echocardiographic risk factors for embolism and mortality in infective endocarditis. Eur J Clin Microbiol Infect Dis 2008; 27 (12) 1159-1164
  • 26 Hill EE, Herijgers P, Herregods MC, Peetermans WE. Evolving trends in infective endocarditis. Clin Microbiol Infect 2006; 12 (1) 5-12
  • 27 Jongerius I, Köhl J, Pandey MK , et al. Staphylococcal complement evasion by various convertase-blocking molecules. J Exp Med 2007; 204 (10) 2461-2471
  • 28 Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett 2013; 150 (1-2) 12-22
  • 29 Kraus D, Peschel A. Staphylococcus aureus evasion of innate antimicrobial defense. Future Microbiol 2008; 3 (4) 437-451
  • 30 Loeb L. The influence of certain bacteria on the coagulation of the blood. J Med Res 1903; 10 (3) 407-419
  • 31 Chapman GH, Berens C, Peters A, Curcio L. Coagulase and hemolysin tests as measures of the pathogenicity of staphylococci. J Bacteriol 1934; 28 (4) 343-363
  • 32 Tiwari HK, Sapkota D, Sen MR. Evaluation of different tests for detection of Staphylococcus aureus using coagulase (coa) gene PCR as the gold standard. Nepal Med Coll J 2008; 10 (2) 129-131
  • 33 Soulier JP, Prou-Wartelle O. Study of thrombin-coagulase. Thromb Diath Haemorrh 1967; 17 (3-4) 321-334
  • 34 Bas BM, Muller AD, Hemker HC. Purification and properties of staphylocoagulase. Biochim Biophys Acta 1975; 379 (1) 164-171
  • 35 Kawabata S, Miyata T, Morita T, Miyata T, Iwanaga S, Igarashi H. The amino acid sequence of the procoagulant- and prothrombin-binding domain isolated from staphylocoagulase. J Biol Chem 1986; 261 (2) 527-531
  • 36 Kaida S, Miyata T, Yoshizawa Y , et al. Nucleotide sequence of the staphylocoagulase gene: its unique COOH-terminal 8 tandem repeats. J Biochem 1987; 102 (5) 1177-1186
  • 37 Friedrich R, Panizzi P, Fuentes-Prior P , et al. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 2003; 425 (6957) 535-539
  • 38 Bjerketorp J, Jacobsson K, Frykberg L. The von Willebrand factor-binding protein (vWbp) of Staphylococcus aureus is a coagulase. FEMS Microbiol Lett 2004; 234 (2) 309-314
  • 39 Kroh HK, Panizzi P, Bock PE. Von Willebrand factor-binding protein is a hysteretic conformational activator of prothrombin. Proc Natl Acad Sci U S A 2009; 106 (19) 7786-7791
  • 40 Bjerketorp J, Nilsson M, Ljungh A, Flock JI, Jacobsson K, Frykberg L. A novel von Willebrand factor binding protein expressed by Staphylococcus aureus. Microbiology 2002; 148 (Pt 7) 2037-2044
  • 41 Hijikata-Okunomiya A, Kataoka N. Argatroban inhibits staphylothrombin. J Thromb Haemost 2003; 1 (9) 2060-2061
  • 42 Vanassche T, Verhaegen J, Peetermans WE, Hoylaerts MF, Verhamme P. Dabigatran inhibits Staphylococcus aureus coagulase activity. J Clin Microbiol 2010; 48 (11) 4248-4250
  • 43 Vanassche T, Verhaegen J, Peetermans WE , et al. Inhibition of staphylothrombin by dabigatran reduces Staphylococcus aureus virulence. J Thromb Haemost 2011; 9 (12) 2436-2446
  • 44 Sawai T, Tomono K, Yanagihara K , et al. Role of coagulase in a murine model of hematogenous pulmonary infection induced by intravenous injection of Staphylococcus aureus enmeshed in agar beads. Infect Immun 1997; 65 (2) 466-471
  • 45 Cawdery M, Foster WD, Hawgood BC, Taylor C. The role of coagulase in the defence of Staphylococcus aureus against phagocytosis. Br J Exp Pathol 1969; 50 (4) 408-412
  • 46 Guggenberger C, Wolz C, Morrissey JA, Heesemann J. Two distinct coagulase-dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. PLoS Pathog 2012; 8 (1) e1002434
  • 47 Ko YP, Kuipers A, Freitag CM , et al. Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog 2013; 9 (12) e1003816
  • 48 Ko YP, Liang X, Smith CW, Degen JL, Höök M. Binding of Efb from Staphylococcus aureus to fibrinogen blocks neutrophil adherence. J Biol Chem 2011; 286 (11) 9865-9874
  • 49 Hoen B. Platelets and platelet inhibitors in infective endocarditis. Curr Infect Dis Rep 2002; 4 (4) 299-303
  • 50 Fitzgerald JR, Foster TJ, Cox D. The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 2006; 4 (6) 445-457
  • 51 Kerrigan SW, Cox D. Platelet-bacterial interactions. Cell Mol Life Sci 2010; 67 (4) 513-523
  • 52 Fitzgerald JR, Loughman A, Keane F , et al. Fibronectin-binding proteins of Staphylococcus aureus mediate activation of human platelets via fibrinogen and fibronectin bridges to integrin GPIIb/IIIa and IgG binding to the FcgammaRIIa receptor. Mol Microbiol 2006; 59 (1) 212-230
  • 53 Kerrigan SW, Clarke N, Loughman A, Meade G, Foster TJ, Cox D. Molecular basis for Staphylococcus aureus-mediated platelet aggregate formation under arterial shear in vitro. Arterioscler Thromb Vasc Biol 2008; 28 (2) 335-340
  • 54 Loughman A, Fitzgerald JR, Brennan MP , et al. Roles for fibrinogen, immunoglobulin and complement in platelet activation promoted by Staphylococcus aureus clumping factor A. Mol Microbiol 2005; 57 (3) 804-818
  • 55 Miajlovic H, Loughman A, Brennan M, Cox D, Foster TJ. Both complement- and fibrinogen-dependent mechanisms contribute to platelet aggregation mediated by Staphylococcus aureus clumping factor B. Infect Immun 2007; 75 (7) 3335-3343
  • 56 Nguyen T, Ghebrehiwet B, Peerschke EI. Staphylococcus aureus protein A recognizes platelet gC1qR/p33: a novel mechanism for staphylococcal interactions with platelets. Infect Immun 2000; 68 (4) 2061-2068
  • 57 O'Brien L, Kerrigan SW, Kaw G , et al. Multiple mechanisms for the activation of human platelet aggregation by Staphylococcus aureus: roles for the clumping factors ClfA and ClfB, the serine-aspartate repeat protein SdrE and protein A. Mol Microbiol 2002; 44 (4) 1033-1044
  • 58 Miajlovic H, Zapotoczna M, Geoghegan JA, Kerrigan SW, Speziale P, Foster TJ. Direct interaction of iron-regulated surface determinant IsdB of Staphylococcus aureus with the GPIIb/IIIa receptor on platelets. Microbiology 2010; 156 (Pt 3) 920-928
  • 59 Herrmann M, Lai QJ, Albrecht RM, Mosher DF, Proctor RA. Adhesion of Staphylococcus aureus to surface-bound platelets: role of fibrinogen/fibrin and platelet integrins. J Infect Dis 1993; 167 (2) 312-322
  • 60 Vanassche T, Kauskot A, Verhaegen J , et al. Fibrin formation by staphylothrombin facilitates Staphylococcus aureus-induced platelet aggregation. Thromb Haemost 2012; 107 (6) 1107-1121
  • 61 Niemann S, Spehr N, Van Aken H , et al. Soluble fibrin is the main mediator of Staphylococcus aureus adhesion to platelets. Circulation 2004; 110 (2) 193-200
  • 62 Mercier RC, Rybak MJ, Bayer AS, Yeaman MR. Influence of platelets and platelet microbicidal protein susceptibility on the fate of Staphylococcus aureus in an in vitro model of infective endocarditis. Infect Immun 2000; 68 (8) 4699-4705
  • 63 Yeaman MR, Sullam PM, Dazin PF, Bayer AS. Platelet microbicidal protein alone and in combination with antibiotics reduces Staphylococcus aureus adherence to platelets in vitro. Infect Immun 1994; 62 (8) 3416-3423
  • 64 Vaudaux P, Suzuki R, Waldvogel FA, Morgenthaler JJ, Nydegger UE. Foreign body infection: role of fibronectin as a ligand for the adherence of Staphylococcus aureus. J Infect Dis 1984; 150 (4) 546-553
  • 65 Wolz C, Goerke C, Landmann R, Zimmerli W, Fluckiger U. Transcription of clumping factor A in attached and unattached Staphylococcus aureus in vitro and during device-related infection. Infect Immun 2002; 70 (6) 2758-2762
  • 66 Zimmerli W, Trampuz A, Ochsner PE. Prosthetic-joint infections. N Engl J Med 2004; 351 (16) 1645-1654
  • 67 Katsuyama M, Ichikawa H, Ogawa S, Ikezawa Z. A novel method to control the balance of skin microflora. Part 1. Attack on biofilm of Staphylococcus aureus without antibiotics. J Dermatol Sci 2005; 38 (3) 197-205
  • 68 Akiyama H, Huh WK, Fujii K, Yamasaki O, Oono T, Iwatsuki K. Confocal laser microscopic observation of glycocalyx production by Staphylococcus aureus in vitro. J Dermatol Sci 2002; 29 (1) 54-61
  • 69 Akiyama H, Ueda M, Kanzaki H, Tada J, Arata J. Biofilm formation of Staphylococcus aureus strains isolated from impetigo and furuncle: role of fibrinogen and fibrin. J Dermatol Sci 1997; 16 (1) 2-10
  • 70 Vanassche T, Peetermans M, Van Aelst LN , et al. The role of staphylothrombin-mediated fibrin deposition in catheter-related Staphylococcus aureus infections. J Infect Dis 2013; 208 (1) 92-100
  • 71 Collen D. Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nat Med 1998; 4 (3) 279-284
  • 72 Peetermans M, Vanassche T, Liesenborghs L , et al. Plasminogen activation by staphylokinase enhances local spreading of S. aureus in skin infections. BMC Microbiol 2014; 14 (1) 310
  • 73 Novick RP. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 2003; 48 (6) 1429-1449
  • 74 Rothfork JM, Dessus-Babus S, Van Wamel WJ, Cheung AL, Gresham HD. Fibrinogen depletion attenuates Staphyloccocus aureus infection by preventing density-dependent virulence gene up-regulation. J Immunol 2003; 171 (10) 5389-5395
  • 75 Kwiecinski J, Jacobsson G, Karlsson M , et al. Staphylokinase promotes the establishment of Staphylococcus aureus skin infections while decreasing disease severity. J Infect Dis 2013; 208 (6) 990-999
  • 76 Kwieciński J, Josefsson E, Mitchell J , et al. Activation of plasminogen by staphylokinase reduces the severity of Staphylococcus aureus systemic infection. J Infect Dis 2010; 202 (7) 1041-1049
  • 77 Herrmann M, Hartleib J, Kehrel B, Montgomery RR, Sixma JJ, Peters G. Interaction of von Willebrand factor with Staphylococcus aureus. J Infect Dis 1997; 176 (4) 984-991
  • 78 Pappelbaum KI, Gorzelanny C, Grässle S , et al. Ultralarge von Willebrand factor fibers mediate luminal Staphylococcus aureus adhesion to an intact endothelial cell layer under shear stress. Circulation 2013; 128 (1) 50-59
  • 79 Claes J, Vanassche T, Peetermans M , et al. Adhesion of Staphylococcus aureus to the vessel wall under flow is mediated by von Willebrand factor-binding protein. Blood 2014; 124 (10) 1669-1676
  • 80 O'Seaghdha M, van Schooten CJ, Kerrigan SW , et al. Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions. FEBS J 2006; 273 (21) 4831-4841
  • 81 Hartleib J, Köhler N, Dickinson RB , et al. Protein A is the von Willebrand factor binding protein on Staphylococcus aureus. Blood 2000; 96 (6) 2149-2156
  • 82 Johnstone JM, Smith DD. Coagulase activity in vivo. Nature 1956; 178 (4540) 982-983
  • 83 van der Vijver JC, van Es-Boon MM, Michel MF. A study of virulence factors with induced mutants of Staphylococcus aureus. J Med Microbiol 1975; 8 (2) 279-287
  • 84 Hasegawa N, Kondo I, Hoshina S, Kurosaka K, Igarashi H. Effect of highly purified coagulase and culture filtrate on virulence and immunity of a coagulase-negative mutant of staphylococcus aureus BB. Infect Immun 1983; 39 (3) 1236-1242
  • 85 Jonsson P, Lindberg M, Haraldsson I, Wadström T. Virulence of Staphylococcus aureus in a mouse mastitis model: studies of alpha hemolysin, coagulase, and protein A as possible virulence determinants with protoplast fusion and gene cloning. Infect Immun 1985; 49 (3) 765-769
  • 86 Baddour LM, Tayidi MM, Walker E, McDevitt D, Foster TJ. Virulence of coagulase-deficient mutants of Staphylococcus aureus in experimental endocarditis. J Med Microbiol 1994; 41 (4) 259-263
  • 87 Moreillon P, Entenza JM, Francioli P , et al. Role of Staphylococcus aureus coagulase and clumping factor in pathogenesis of experimental endocarditis. Infect Immun 1995; 63 (12) 4738-4743
  • 88 Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. PLoS Pathog 2010; 6 (8) e1001036
  • 89 Lam GT, Sweeney Jr FJ, Witmer CM, Wise RI. Abscess-forming factor(s) produced by Staphylococcus aureus. I. Collodion bag implantation technique. J Bacteriol 1963; 86: 611-615
  • 90 Lam GT, Sweeney Jr FJ, Witmer CM, Wise RI. Abscess-forming factor(s) produced by Staphylococcus aureus. Ii. Abscess formation and immunity by a Staphylococcus and its mutants. J Bacteriol 1963; 86: 87-91
  • 91 Katneni R, Hedayati SS. Central venous catheter-related bacteremia in chronic hemodialysis patients: epidemiology and evidence-based management. Nat Clin Pract Nephrol 2007; 3 (5) 256-266
  • 92 Mokrzycki MH, Zhang M, Cohen H, Golestaneh L, Laut JM, Rosenberg SO. Tunnelled haemodialysis catheter bacteraemia: risk factors for bacteraemia recurrence, infectious complications and mortality. Nephrol Dial Transplant 2006; 21 (4) 1024-1031
  • 93 Hau T, Nishikawa RA, Phuangsab A. The effect of bacterial trapping by fibrin on the efficacy of systemic antibiotics in experimental peritonitis. Surg Gynecol Obstet 1983; 157 (3) 252-256
  • 94 Ekstedt RD, Yotis WW. Studies on staphylococci. II. Effect of coagulase on the virulence of coagulase negative strains. J Bacteriol 1960; 80: 496-500
  • 95 McAdow M, Kim HK, Dedent AC, Hendrickx AP, Schneewind O, Missiakas DM. Preventing Staphylococcus aureus sepsis through the inhibition of its agglutination in blood. PLoS Pathog 2011; 7 (10) e1002307
  • 96 Flick MJ, Du X, Prasad JM , et al. Genetic elimination of the binding motif on fibrinogen for the S. aureus virulence factor ClfA improves host survival in septicemia. Blood 2013; 121 (10) 1783-1794
  • 97 Baddour LM. Infective endocarditis: new concepts in pathogenesis. Curr Opin Infect Dis 1999; 12 (3) 201-204
  • 98 Thiene G, Basso C. Pathology and pathogenesis of infective endocarditis in native heart valves. Cardiovasc Pathol 2006; 15 (5) 256-263
  • 99 Panizzi P, Nahrendorf M, Figueiredo JL , et al. In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen-specific prothrombin activation. Nat Med 2011; 17 (9) 1142-1146
  • 100 Veloso TR, Que YA, Chaouch A , et al. Prophylaxis of experimental endocarditis with antiplatelet and antithrombin agents: a role for long-term prevention of infective endocarditis in humans?. J Infect Dis 2015; 211 (1) 72-79
  • 101 McAdow M, DeDent AC, Emolo C , et al. Coagulases as determinants of protective immune responses against Staphylococcus aureus. Infect Immun 2012; 80 (10) 3389-3398
  • 102 Fowler VG, Allen KB, Moreira ED , et al. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery: a randomized trial. JAMA 2013; 309 (13) 1368-1378