Horm Metab Res 2016; 48(01): 70-75
DOI: 10.1055/s-0035-1549876
Endocrine Research
© Georg Thieme Verlag KG Stuttgart · New York

Protective Effects of Liraglutide and Linagliptin in C. elegans as a New Model for Glucose-Induced Neurodegeneration

K. Wongchai
1   5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
,
A. Schlotterer
1   5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
,
J. Lin
1   5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
,
P. M. Humpert
2   Stoffwechselzentrum Rhein-Pfalz, Innere Medizin, Endocrinologie & Diabetologie, Mannheim, Germany
,
T. Klein
3   Boehringer Mannheim Pharma GmbH & Co. KG., Metabolic Diseases, Biberach an der Riß, Germany
,
H.-P. Hammes
1   5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
,
M. Morcos
2   Stoffwechselzentrum Rhein-Pfalz, Innere Medizin, Endocrinologie & Diabetologie, Mannheim, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 08. Dezember 2014

accepted 31. März 2015

Publikationsdatum:
07. Mai 2015 (online)

Abstract

Liraglutide and linagliptin are novel drugs for the treatment of diabetes. Antioxidative and neuroprotective effects have been described for both compounds. However, it is not yet known, whether these mechanisms are also protective against diabetic retinal neurodegeneration. We assessed the antioxidative and neuroprotective capabilities of liraglutide and linagliptin as well as the signaling pathways involved, by using C. elegans as a model for glucose-induced neurodegeneration. C. elegans were cultivated under conditions, which mimic clinical hyperglycemia, and treated with 160 μmol/l liraglutide or 13 μmol/l linagliptin. Oxidative stress was reduced by 29 or 78% and methylglyoxal-derived advanced glycation endproducts (AGEs) by 33 or 22%, respectively. This resulted in an improved neuronal function by 42 or 60% and an extended mean lifespan by 9 or 11%, respectively. Antioxidative and AGE reducing effects of liraglutide and linagliptin were not dependent on v-akt murine thymoma viral oncogene homologue 1/forkhead box O1 (AKT1/FOXO). Neuroprotection by liraglutide was AKT1/FOXO dependent, yet AKT1/FOXO independent upon linagliptin treatment. Both liraglutide and linagliptin exert neuroprotective effects in an experimental model for glucose-induced neurodegeneration, however, the signaling pathways differ in the present study. Further pharmacological intervention with these pathways may help to delay the clinical onset of diabetic retinopathy by preserving neuronal integrity.

 
  • References

  • 1 Feng Y, Busch S, Gretz N, Hoffmann S, Hammes HP. Crosstalk in the retinal neurovascular unit – lessons for the diabetic retina. Exp Clin Endocrinol Diabetes 2012; 120: 199-201
  • 2 McClean PL, Parthsarathy V, Faivre E, Holscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci 2011; 31: 6587-6594
  • 3 Holst JJ, Burcelin R, Nathanson E. Neuroprotective properties of GLP-1: theoretical and practical applications. Curr Med Res Opin 2011; 27: 547-558
  • 4 Trumper K, Trumper A, Trusheim H, Arnold R, Goke B, Horsch D. Integrative mitogenic role of protein kinase B/Akt in beta-cells. Ann N Y Acad Sci 2000; 921: 242-250
  • 5 Fatrai S, Elghazi L, Balcazar N, Cras-Meneur C, Krits I, Kiyokawa H, Bernal-Mizrachi E. Akt induces beta-cell proliferation by regulating cyclin D1, cyclin D2, and p21 levels and cyclin-dependent kinase-4 activity. Diabetes 2006; 55: 318-325
  • 6 Peshavaria M, Larmie BL, Lausier J, Satish B, Habibovic A, Roskens V, Larock K, Everill B, Leahy JL, Jetton TL. Regulation of pancreatic beta-cell regeneration in the normoglycemic 60% partial-pancreatectomy mouse. Diabetes 2006; 55: 3289-3298
  • 7 Wang Q, Li L, Xu E, Wong V, Rhodes C, Brubaker PL. Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells. Diabetologia 2004; 47: 478-487
  • 8 Wrede CE, Dickson LM, Lingohr MK, Briaud I, Rhodes CJ. Protein kinase B/Akt prevents fatty acid-induced apoptosis in pancreatic beta-cells (INS-1). J Biol Chem 2002; 277: 49676-49684
  • 9 Gaglia MM, Kenyon C. Stimulation of movement in a quiescent, hibernation-like form of Caenorhabditis elegans by dopamine signaling. J Neurosci 2009; 29: 7302-7314
  • 10 Byrne AB, Walradt T, Gardner KE, Hubbert A, Reinke V, Hammarlund M. Insulin/IGF1 signaling inhibits age-dependent axon regeneration. Neuron 2014; 81: 561-573
  • 11 Batchuluun B, Inoguchi T, Sonoda N, Sasaki S, Inoue T, Fujimura Y, Miura D, Takayanagi R. Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells. Atherosclerosis 2014; 232: 156-164
  • 12 Filippatos TD, Elisaf MS. Effects of glucagon-like peptide-1 receptor agonists on renal function. World J Diabetes 2013; 4: 190-201
  • 13 Shiraki A, Oyama J, Komoda H, Asaka M, Komatsu A, Sakuma M, Kodama K, Sakamoto Y, Kotooka N, Hirase T, Node K. The glucagon-like peptide 1 analog liraglutide reduces TNF-alpha-induced oxidative stress and inflammation in endothelial cells. Atherosclerosis 2012; 221: 375-382
  • 14 Agrawal R, Jain P, Dikshit SN. Linagliptin: a novel methylxanthin based approved dipeptidyl peptidase-4 inhibitor. Curr Drug Targets 2012; 13: 970-983
  • 15 Steinbrecher A, Reinhold D, Quigley L, Gado A, Tresser N, Izikson L, Born I, Faust J, Neubert K, Martin R, Ansorge S, Brocke S. Dipeptidyl peptidase IV in inflammatory CNS disease. Adv Exp Med Biol 2000; 477: 145-153
  • 16 Preller V, Gerber A, Wrenger S, Togni M, Marguet D, Tadje J, Lendeckel U, Rocken C, Faust J, Neubert K, Schraven B, Martin R, Ansorge S, Brocke S, Reinhold D. TGF-beta1-mediated control of central nervous system inflammation and autoimmunity through the inhibitory receptor CD26. J Immunol 2007; 178: 4632-4640
  • 17 Reinhold D, Biton A, Pieper S, Lendeckel U, Faust J, Neubert K, Bank U, Tager M, Ansorge S, Brocke S. Dipeptidyl peptidase IV (DP IV, CD26) and aminopeptidase N (APN, CD13) as regulators of T cell function and targets of immunotherapy in CNS inflammation. Int Immunopharmacol 2006; 6: 1935-1942
  • 18 Steinbrecher A, Reinhold D, Quigley L, Gado A, Tresser N, Izikson L, Born I, Faust J, Neubert K, Martin R, Ansorge S, Brocke S. Targeting dipeptidyl peptidase IV (CD26) suppresses autoimmune encephalomyelitis and up-regulates TGF-beta 1 secretion in vivo. J Immunol 2001; 166: 2041-2048
  • 19 Rohnert P, Schmidt W, Emmerlich P, Goihl A, Wrenger S, Bank U, Nordhoff K, Tager M, Ansorge S, Reinhold D, Striggow F. Dipeptidyl peptidase IV, aminopeptidase N and DPIV/APN-like proteases in cerebral ischemia. J Neuroinflam 2012; 9: 44
  • 20 Kroller-Schon S, Knorr M, Hausding M, Oelze M, Schuff A, Schell R, Sudowe S, Scholz A, Daub S, Karbach S, Kossmann S, Gori T, Wenzel P, Schulz E, Grabbe S, Klein T, Munzel T, Daiber A. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc Res 2012; 96: 140-149
  • 21 Mendler M, Schlotterer A, Morcos M, Nawroth PP. Understanding diabetic polyneuropathy and longevity: what can we learn from the nematode Caenorhabditis elegans?. Exp Clin Endocrinol Diabetes 2012; 120: 182-183
  • 22 Schlotterer A, Kukudov G, Bozorgmehr F, Hutter H, Du X, Oikonomou D, Ibrahim Y, Pfisterer F, Rabbani N, Thornalley P, Sayed A, Fleming T, Humpert P, Schwenger V, Zeier M, Hamann A, Stern D, Brownlee M, Bierhaus A, Nawroth P, Morcos MC. elegans as model for the study of high glucose- mediated life span reduction. Diabetes 2009; 58: 2450-2456
  • 23 Thorpe SR, Baynes JW. Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging 1996; 9: 69-77
  • 24 Morcos M, Du X, Pfisterer F, Hutter H, Sayed AA, Thornalley P, Ahmed N, Baynes J, Thorpe S, Kukudov G, Schlotterer A, Bozorgmehr F, El Baki RA, Stern D, Moehrlen F, Ibrahim Y, Oikonomou D, Hamann A, Becker C, Zeier M, Schwenger V, Miftari N, Humpert P, Hammes HP, Buechler M, Bierhaus A, Brownlee M, Nawroth PP. Glyoxalase-1 prevents mitochondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell 2008; 7: 260-269
  • 25 Hammes HP, Federoff HJ, Brownlee M. Nerve growth factor prevents both neuroretinal programmed cell death and capillary pathology in experimental diabetes. Mol Med 1995; 1: 527-534
  • 26 Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Eng J Med 2012; 366: 1227-1239
  • 27 Tehrani N, Del Rosario J, Dominguez M, Kalb R, Mano I. The insulin/IGF signaling regulators cytohesin/GRP-1 and PIP5K/PPK-1 modulate susceptibility to excitotoxicity in C. elegans. PloS One 2014; 9: e113060
  • 28 Schlotterer A, Hamann A, Kukudov G, Ibrahim Y, Heckmann B, Bozorgmehr F, Pfeiffer M, Hutter H, Stern D, Du X, Brownlee M, Bierhaus A, Nawroth P, Morcos M. Apurinic/apyrimidinic endonuclease 1, p53, and thioredoxin are linked in control of aging in C. elegans. Aging Cell 2010; 9: 420-432
  • 29 Mendler M, Schlotterer A, Ibrahim Y, Kukudov G, Fleming T, Bierhaus A, Riedinger C, Schwenger V, Herzig S, Hecker M, Tyedmers J, Nawroth PP, Morcos M. daf-16/FOXO and glod-4/glyoxalase-1 are required for the life-prolonging effect of human insulin under high glucose conditions in Caenorhabditis elegans. Diabetologia 2015; 58: 393-401
  • 30 Abramoff MD, Magelhaes PJ, Ram SJ. Image Processing with ImageJ. Biophotonics Int 2004; 11: 36-42
  • 31 Wolkow CA, Kimura KD, Lee MS, Ruvkun G. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 2000; 290: 147-150
  • 32 Alcedo J, Kenyon C. Regulation of C. elegans longevity by specific gustatory and olfactory neurons. Neuron 2004; 41: 45-55
  • 33 Knorr M, Schell R, Steven S, Heeren T, Schuff A, Oelze M, Schuhmacher S, Hausding M, Münzel T, Klein T, Daiber A. Comparison of Direct and Indirect Antioxidant Effects of Linagliptin (BI 1356, ONDERO) with other Gliptins – Evidence for Anti-inflammatory Properties of Linagliptin. Free Radical Biol Med 2010; 49: S197
  • 34 Kröller-Schuhmacher S, Knorr M, Oelze M, Schuff A, Hausding M, Schell R, Sudowe S, Scholz A, Daub S, Karbach S, Kossmann S, Schulz E, Gori T, Wenzel P, Klein T, Münzel T, Daiber A. Comparison of direct and indirect antioxidant effect of linagliptin with other gliptins – evidence for antioxidant and antiinflammatory properties of linagliptin. Vasc Pharmacol 2012; 56: 352
  • 35 Parthsarathy V, Holscher C. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model. PloS One 2013; 8: e58784
  • 36 Jee C, Lee J, Lim JP, Parry D, Messing RO, McIntire SL. SEB-3, a CRF receptor-like GPCR, regulates locomotor activity states, stress responses and ethanol tolerance in Caenorhabditis elegans. Genes Brain Behav 2013; 12: 250-262
  • 37 Frooninckx L, Van Rompay L, Temmerman L, Van Sinay E, Beets I, Janssen T, Husson SJ, Schoofs L. Neuropeptide GPCRs in C. elegans. Front Endocrinol 2012; 3: 167
  • 38 Tsai TH, Sun CK, Su CH, Sung PH, Chua S, Zhen YY, Leu S, Chang HW, Yang JL, Yip HK. Sitagliptin attenuated brain damage and cognitive impairment in mice with chronic cerebral hypo-perfusion through suppressing oxidative stress and inflammatory reaction. J Hypertens 2015; DOI: 10.1097/HJH.0000000000000529.
  • 39 Gault VA, Lennox R, Flatt PR. Sitagliptin, a dipeptidyl peptidase-4 inhibitor, improves recognition memory, oxidative stress and hippocampal neurogenesis and upregulates key genes involved in cognitive decline. Diabetes Obes Metab 2015; 17: 403-413
  • 40 Pintana H, Apaijai N, Chattipakorn N, Chattipakorn SC. DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J Endocrinol 2013; 218: 1-11
  • 41 Darsalia V, Ortsater H, Olverling A, Darlof E, Wolbert P, Nystrom T, Klein T, Sjoholm A, Patrone C. The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: a comparison with glimepiride. Diabetes 2013; 62: 1289-1296
  • 42 Yoshina S, Sakaki K, Yonezumi-Hayashi A, Gengyo-Ando K, Inoue H, Iino Y, Mitani S. Identification of a novel ADAMTS9/GON-1 function for protein transport from the ER to the Golgi. Mol Biol Cell 2012; 23: 1728-1741
  • 43 Shimizu S, Hosooka T, Matsuda T, Asahara S, Koyanagi-Kimura M, Kanno A, Bartolome A, Etoh H, Fuchita M, Teruyama K, Takahashi H, Inoue H, Mieda Y, Hashimoto N, Seino S, Kido Y. DPP4 inhibitor vildagliptin preserves beta-cell mass through amelioration of endoplasmic reticulum stress in C/EBPB transgenic mice. J Mol Endocrinol 2012; 49: 125-135
  • 44 De Haes W, Frooninckx L, Van Assche R, Smolders A, Depuydt G, Billen J, Braeckman BP, Schoofs L, Temmerman L. Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci USA 2014; 111: E2501-E2509