RSS-Feed abonnieren
DOI: 10.1055/s-0035-1551829
Intraoperative Micro-Doppler in Cerebral Arteriovenous Malformations
Publikationsverlauf
09. Juli 2014
30. Dezember 2014
Publikationsdatum:
03. Juli 2015 (online)
Abstract
Introduction Intraoperative micro-Doppler (IOMD), intraoperative digital substraction angiography (DSA), and microscope-integrated indocyanine green angiography are methods that guide neurosurgical resection of arteriovenous malformations (AVMs) in the brain and minimize the trauma of healthy tissue. In this study we emphasize the use of IOMD in AVM surgery, analyzing the advantages and the limitations of this method.
Patients and Methods A total of 32 patients were diagnosed with an AVM. Supplying arteries and draining veins were analyzed regarding hemodynamic profiles, flow velocities, pulsatility index (PI), and resistance index (RI). Venous drainages were accompanied by arterial blood flow disturbances that showed typical characteristics in all cases. We set an angle of 60 degrees between the examined vessel and the probe to achieve a more reliable and comparable measurement. Postoperative DSA was performed in all patients.
Results Supplying arterial blood vessels of AVMs could be identified by their characteristic blood flow profiles with PI < 0.7 and RI < 0.55. Drainage veins in all 32 cases showed normalized venous flow patterns without arterial flow turbulences at the end of the surgical procedure. Postoperative DSA revealed a residual AVM in one patient.
Conclusions IOMD constitutes a safe, accurate, and low-cost imaging modality for evaluating blood flow velocities and for optimal stepwise AVM elimination without unnecessary sacrifice of veins. PI and RI are reliable parameters in diagnosing cerebrovascular malformations, but systolic and diastolic flow velocities may vary to a greater extent. This phenomenon has never been elucidated previously and therefore needs to be emphasized when using this technique intraoperatively.
-
References
- 1 Hernesniemi JA, Dashti R, Juvela S, Väärt K, Niemelä M, Laakso A. Natural history of brain arteriovenous malformations: a long-term follow-up study of risk of hemorrhage in 238 patients. Neurosurgery 2008; 63 (5) 823-829 ; discussion 829–831
- 2 Ondra SL, Troupp H, George ED, Schwab K. The natural history of symptomatic arteriovenous malformations of the brain: a 24-year follow-up assessment. J Neurosurg 1990; 73 (3) 387-391
- 3 Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg 1986; 65 (4) 476-483
- 4 Spetzler RF, Ponce FA. A 3-tier classification of cerebral arteriovenous malformations. Clinical article. J Neurosurg 2011; 114 (3) 842-849
- 5 Pik JH, Morgan MK. Microsurgery for small arteriovenous malformations of the brain: results in 110 consecutive patients. Neurosurgery 2000; 47 (3) 571-575 ; discussion 575–577
- 6 Firsching R, Synowitz HJ, Hanebeck J. Practicability of intraoperative microvascular Doppler sonography in aneurysm surgery. Minim Invasive Neurosurg 2000; 43 (3) 144-148
- 7 Fuentes JM, Benezech J, Cesari JB, Vongsouthi C, Prince P, Billet M. Technique d'utilisation du Doppler peropératoire en neurochirurgie[in French]. J Mal Vasc 1988; 13 (2) 154-158
- 8 Gilsbach JM, Hassler WE. Intraoperative Doppler and real time sonography in neurosurgery. Neurosurg Rev 1984; 7 (2-3) 199-208
- 9 Gilsbach JM. Mikrovaskuläre intraoperative Doppler-Sonographie [in German]. Ultraschall Med 1984; 5 (5) 246-254
- 10 Goodkin R, McKhann II GM, Haynor DR, Mayberg MR, Eskridge JM, Winn HR. Persistent feeding arteries to angiographically completely embolized arteriovenous malformation demonstrated by intraoperative color-flow Doppler testing: report of two cases. Surg Neurol 1995; 44 (4) 326-332 ; discussion 332–333
- 11 Gosling RG, King DH. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med 1974; 67 (6 Pt 1) 447-449
- 12 Langmoen IA, Lundar T. A tribute to Helge Nornes. Acta Neurochir Suppl (Wien) 1999; 72: 1-5
- 13 Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 1982; 57 (6) 769-774
- 14 Nornes H, Grip A, Wikeby P. Intraoperative evaluation of cerebral hemodynamics using directional Doppler technique. Part 1: Arteriovenous malformations. J Neurosurg 1979; 50 (2) 145-151
- 15 Hassler W. Hemodynamic aspects of cerebral angiomas. Acta Neurochir Suppl (Wien) 1986; 37: 1-136
- 16 Lindegaard KF, Grolimund P, Aaslid R, Nornes H. Evaluation of cerebral AVM's using transcranial Doppler ultrasound. J Neurosurg 1986; 65 (3) 335-344
- 17 Andrychowski J, Czernicki Z, Bogucki J, Nauman P, Piwowarski G. Badania przepływu krwi w naczyniu tetniczym uzytym do rewaskularyzacji. Encephalo-duro-arterio-synangiosis. (non bypass anastomosis). Doniesienie wstepne [in Polish]. Neurol Neurochir Pol 1998; 32 (5) 1199-1206
- 18 Bill TJ, Foresman PA, Rodeheaver GT, Drake DB. Fibrin sealant: a novel method of fixation for an implantable ultrasonic microDoppler probe. J Reconstr Microsurg 2001; 17 (4) 257-262
- 19 Rahal JP, Malek AM. Benefit of cone-beam computed tomography angiography in acute management of angiographically undetectable ruptured arteriovenous malformations. J Neurosurg 2013; 119 (4) 1015-1020
- 20 Ellis MJ, Rutka JT, Kulkarni AV, Dirks PB, Widjaja E. Corticospinal tract mapping in children with ruptured arteriovenous malformations using functionally guided diffusion-tensor imaging. J Neurosurg Pediatr 2012; 9 (5) 505-510
- 21 Bekelis K, Missios S, Desai A, Eskey C, Erkmen K. Magnetic resonance imaging/magnetic resonance angiography fusion technique for intraoperative navigation during microsurgical resection of cerebral arteriovenous malformations. Neurosurg Focus 2012; 32 (5) E7
- 22 Gilsbach JM. Intraoperative Doppler Sonography in Neurosurgery. Vienna, Austria: Springer; 1983
- 23 Kataoka H, Miyamoto S, Nagata I, Ueno Y, Hashimoto N. Intraoperative microdoppler monitoring for spinal dural arteriovenous fistulae. Surg Neurol 1999; 52 (5) 466-472
- 24 Laborde G, Gilsbach J, Harders A. The microvascular Doppler—an intraoperative tool for the treatment of large and giant aneurysms. Acta Neurochir Suppl (Wien) 1988; 42: 75-80
- 25 Mast H, Mohr JP, Thompson JLP , et al. Transcranial Doppler ultrasonography in cerebral arteriovenous malformations. Diagnostic sensitivity and association of flow velocity with spontaneous hemorrhage and focal neurological deficit. Stroke 1995; 26 (6) 1024-1027
- 26 Faber F, Thon N, Fesl G , et al. Enhanced analysis of intracerebral arteriovenous malformations by the intraoperative use of analytical indocyanine green videoangiography: technical note. Acta Neurochir (Wien) 2011; 153 (11) 2181-2187
- 27 Killory BD, Nakaji P, Gonzales LF, Ponce FA, Wait SD, Spetzler RF. Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green angiography during cerebral arteriovenous malformation surgery. Neurosurgery 2009; 65 (3) 456-462 ; discussion 462
- 28 Wrobel CJ, Meltzer H, Lamond R, Alksne JF. Intraoperative assessment of aneurysm clip placement by intravenous fluorescein angiography. Neurosurgery 1994; 35 (5) 970-973 ; discussion 973
- 29 Raabe A, Spetzler RF. Fluorescence angiography. J Neurosurg 2008; 108 (2) 429-430 ; author reply 430
- 30 Akdemir H, Oktem S, Menkü A, Tucer B, Tuğcu B, Günaldi O. Image-guided microneurosurgical management of small arteriovenous malformation: role of neuronavigation and intraoperative Doppler sonography. Minim Invasive Neurosurg 2007; 50 (3) 163-169