Fortschr Neurol Psychiatr 2015; 83(08): 427-436
DOI: 10.1055/s-0035-1553475
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Chemotherapie-induzierte Polyneuropathie

Chemotherapy-induced Peripheral Neuropathy
I. Bobylev
1   Klinik und Poliklinik für Neurologie, Universitätsklinikum Köln
,
T. Elter
2   Klinik für Innere Medizin I, Universitätsklinikum Köln
,
C. Schneider
1   Klinik und Poliklinik für Neurologie, Universitätsklinikum Köln
,
G. Wunderlich
1   Klinik und Poliklinik für Neurologie, Universitätsklinikum Köln
,
P. Zimmer
3   Institut für Kreislaufforschung und Sportmedizin, Deutsche Sporthochschule Köln
,
F. Streckmann
3   Institut für Kreislaufforschung und Sportmedizin, Deutsche Sporthochschule Köln
,
G. R. Fink
1   Klinik und Poliklinik für Neurologie, Universitätsklinikum Köln
4   Institut für Neurowissenschaften und Medizin, Forschungszentrum Jülich
,
H. C. Lehmann
1   Klinik und Poliklinik für Neurologie, Universitätsklinikum Köln
› Author Affiliations
Further Information

Publication History

06 May 2015

15 July 2015

Publication Date:
01 September 2015 (online)

Zusammenfassung

Eine periphere Neuropathie ist eine häufige und klinisch relevante Nebenwirkung antineoplastischer Substanzen wie Cisplatin, Paclitaxel, Vincristin und Bortezomib. Die Pathomechanismen, die zur Entstehung einer Chemotherapie-induzierten Polyneuropathie (CIPN) beitragen, wurden in den letzten Jahren anhand unterschiedlicher in vivo und in vitro-Modelle untersucht. Dabei konnte gezeigt werden, dass eine Chemotherapie-induzierte mitochondriale Dysfunktion, gestörter axonaler Transport, Toxizität gegenüber Schwann-Zellen und die Aktivierung des Immunsystems eine wichtige Rolle spielen. Diese Arbeit gibt einen Überblick über den aktuellen Stand der Forschung zur Entstehung einer CIPN. Zudem werden neue experimentelle Ansätze diskutiert, um neurotoxische Effekte antineoplastischer Substanzen zu verhindern oder abzuschwächen und somit der Entwicklung einer CIPN vorzubeugen.

Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) is a common and relevant side effect of antineoplastic agents such as cisplatin, paclitaxel, vincristine and bortezomib. Over the last years, significant progress has been achieved in elucidating the underlying pathomechanisms of CIPN using both in vivo and in vitro models. These studies suggest that mitochondrial toxicity, disturbed axonal transport, toxic effects on Schwann cells and activation of the immune system contribute to the pathogenesis of CIPN. This review provides an overview of the current pathogenetic concepts of CIPN. In addition, experimental approaches that aim at preventing or ameliorating neurotoxic effects of antineoplastic agents are discussed.

 
  • Referenzen

  • 1 Quasthoff S, Hartung HP. Chemotherapy-induced peripheral neuropathy. J Neurol 2002; 249: 9-17
  • 2 Windebank AJ, Grisold W. Chemotherapy-induced neuropathy. J Peripher Nerv Syst JPNS 2008; 13: 27-46
  • 3 Arrieta O, González-De la Rosa CH, Aréchaga-Ocampo E et al. Randomized phase II trial of All-trans-retinoic acid with chemotherapy based on paclitaxel and cisplatin as first-line treatment in patients with advanced non-small-cell lung cancer. J Clin Oncol 2010; 28: 3463-3471
  • 4 Corso A, Mangiacavalli S, Varettoni M et al. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comparison between previously treated and untreated patients. Leuk Res 2010; 34: 471-474
  • 5 Kanbayashi Y, Hosokawa T, Okamoto K et al. Statistical identification of predictors for peripheral neuropathy associated with administration of bortezomib, taxanes, oxaliplatin or vincristine using ordered logistic regression analysis. Anticancer Drugs 2010; 21: 877-881
  • 6 Jacobs JM. Vascular permeability and neurotoxicity. Environ Health Perspect 1978; 26: 107-116
  • 7 Pettersson CA, Sharma HS, Olsson Y. Vascular permeability of spinal nerve roots. A study in the rat with Evans blue and lanthanum as tracers. Acta Neuropathol (Berl) 1990; 81: 148-154
  • 8 Unger C, Eibl H, von Heyden HW et al. Blut-Hirnschranke und Penetration von Zytostatika. Klin Wochenschr 1985; 63: 565-571
  • 9 Larson DL, Rodin AE, Roberts DK et al. Perineural lymphatics: Myth or fact. Am J Surg 1966; 112: 488-492
  • 10 Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest 2010; 120: 3760-3772
  • 11 Mantyh PW. Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci 2006; 7: 797-809
  • 12 Chaudhry V, Rowinsky EK, Sartorius SE et al. Peripheral neuropathy from taxol and cisplatin combination chemotherapy: clinical and electrophysiological studies. Ann Neurol 1994; 35: 304-311
  • 13 Wampler MA, Hamolsky D, Hamel K et al. Case report: painful peripheral neuropathy following treatment with docetaxel for breast cancer. Clin J Oncol Nurs 2005; 9: 189-193
  • 14 Antoine JC, Camdessanché JP. Peripheral nervous system involvement in patients with cancer. Lancet Neurol 2007; 6: 75-86
  • 15 Argyriou AA, Iconomou G, Kalofonos HP. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 2008; 112: 1593-1599
  • 16 Pace A, Bove L, Aloe A et al. Paclitaxel neurotoxicity: clinical and neurophysiological study of 23 patients. Ital J Neurol Sci 1997; 18: 73-79
  • 17 Authier N, Balayssac D, Marchand F et al. Animal models of chemotherapy-evoked painful peripheral neuropathies. Neurother J Am Soc Exp 2009; 6: 620-629
  • 18 Grothe C, Unsicker K. Neuron-enriched cultures of adult rat dorsal root ganglia: establishment, characterization, survival, and neuropeptide expression in response to trophic factors. J Neurosci Res 1987; 18: 539-550
  • 19 Scott BS. Adult mouse dorsal root ganglia neurons in cell culture. J Neurobiol 1977; 8: 417-427
  • 20 Carozzi VA, Canta A, Oggioni N et al. Neurophysiological and neuropathological characterization of new murine models of chemotherapy-induced chronic peripheral neuropathies. Exp Neurol 2010; 226: 301-309
  • 21 Matsumoto M, Inoue M, Hald A et al. Inhibition of Paclitaxel-Induced A-Fiber Hypersensitization by Gabapentin. J Pharmacol Exp Ther 2006; 318: 735-740
  • 22 Frigeni B, Piatti M, Lanzani F et al. Chemotherapy-induced peripheral neurotoxicity can be misdiagnosed by the National Cancer Institute Common Toxicity scale. J Peripher Nerv Syst 2011; 16: 228-236
  • 23 Postma TJ, Aaronson NK, Heimans JJ et al. The development of an EORTC quality of life questionnaire to assess chemotherapy-induced peripheral neuropathy: The QLQ-CIPN20. Eur J Cancer 2005; 41: 1135-1139
  • 24 Masters JRW, Köberle B. Curing metastatic cancer: lessons from testicular germ-cell tumours. Nat Rev Cancer 2003; 3: 517-525
  • 25 Eastman A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther 1987; 34: 155-166
  • 26 Fichtinger-Schepman AM, van der Veer JL, den Hartog JH et al. Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry (Mosc) 1985; 24: 707-713
  • 27 Moggs JG, Szymkowski DE, Yamada M et al. Differential human nucleotide excision repair of paired and mispaired cisplatin-DNA adducts. Nucleic Acids Res 1997; 25: 480-491
  • 28 Jiang M, Dong Z. Regulation and pathological role of p53 in cisplatin nephrotoxicity. J Pharmacol Exp Ther 2008; 327: 300-307
  • 29 Norbury CJ, Zhivotovsky B. DNA damage-induced apoptosis. Oncogene 2004; 23: 2797-2808
  • 30 Pabla N, Dong Z. Cisplatin nephrotoxicity: Mechanisms and renoprotective strategies. Kidney Int 2008; 73: 994-1007
  • 31 Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature 1979; 277: 665-667
  • 32 McGrogan BT, Gilmartin B, Carney DN et al. Taxanes, microtubules and chemoresistant breast cancer. Biochim Biophys Acta 2008; 1785: 96-132
  • 33 Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004; 4: 253-265
  • 34 Haldar S, Basu A, Croce CM. Bcl2 is the guardian of microtubule integrity. Cancer Res 1997; 57: 229-233
  • 35 André N, Braguer D, Brasseur G et al. Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells’. Cancer Res 2000; 60: 5349-5353
  • 36 André N, Carré M, Brasseur G et al. Paclitaxel targets mitochondria upstream of caspase activation in intact human neuroblastoma cells. FEBS Lett 2002; 532: 256-260
  • 37 Gascoigne KE, Taylor SS. How do anti-mitotic drugs kill cancer cells?. J Cell Sci 2009; 122: 2579-2585
  • 38 Wang LG, Liu XM, Kreis W et al. The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother Pharmacol 1999; 44: 355-361
  • 39 Chen D, Frezza M, Schmitt S et al. Bortezomib as the First Proteasome Inhibitor Anticancer Drug: Current Status and Future Perspectives. Curr Cancer Drug Targets 2011; 11: 239-253
  • 40 Blagosklonny MV. P53: an ubiquitous target of anticancer drugs. Int J Cancer J Int Cancer 2002; 98: 161-166
  • 41 Chen ZJ. Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 2005; 7: 758-765
  • 42 Li B, Dou QP. Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci U S A 2000; 97: 3850-3855
  • 43 Yang H, Zonder JA, Dou QP. Clinical development of novel proteasome inhibitors for cancer treatment. Expert Opin Investig Drugs 2009; 18: 957-971
  • 44 Nawrocki ST, Carew JS, Dunner K et al. Bortezomib Inhibits PKR-Like Endoplasmic Reticulum (ER) Kinase and Induces Apoptosis via ER Stress in Human Pancreatic Cancer Cells. Cancer Res 2005; 65: 11510-11519
  • 45 Richardson PG, Weller E, Jagannath S et al. Multicenter, Phase I, Dose-Escalation Trial of Lenalidomide Plus Bortezomib for Relapsed and Relapsed/Refractory Multiple Myeloma. http://jco.ascopubs.org Accessed 9 Dec 2013
  • 46 Gordon JA, Gattone VH. Mitochondrial alterations in cisplatin-induced acute renal failure. Am J Physiol – Ren Physiol 1986; 250: F991-F998
  • 47 Tomiwa K, Nolan C, Cavanagh JB. The effects of cisplatin on rat spinal ganglia: a study by light and electron microscopy and by morphometry. Acta Neuropathol (Berl) 1986; 69: 295-308
  • 48 Wang XM, Lehky TJ, Brell JM et al. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 2012; 59: 3-9
  • 49 Ip V, Liu JJ, Mercer JFB et al. Differential expression of ATP7A, ATP7B and CTR1 in adult rat dorsal root ganglion tissue. Mol Pain 2010; 6: 53
  • 50 Ishida S, Lee J, Thiele DJ et al. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A 2002; 99: 14298-14302
  • 51 Cavalletti G, Nicolini G, Ceresa C et al. Organic cation transporter 2 mRNA expression in dorsal root ganglia neurons. Ital J Anat Embryol 2010; 115: 36
  • 52 Cece R, Petruccioli MG, Cavaletti G et al. An ultrastructural study of neuronal changes in dorsal root ganglia (DRG) of rats after chronic cisplatin administrations. Histol Histopathol 1995; 10: 837-845
  • 53 Gill JS, Windebank AJ. Cisplatin-induced apoptosis in rat dorsal root ganglion neurons is associated with attempted entry into the cell cycle. J Clin Invest 1998; 101: 2842-2850
  • 54 Olivero OA, Chang PK, Lopez-Larraza DM et al. Preferential formation and decreased removal of cisplatin-DNA adducts in Chinese hamster ovary cell mitochondrial DNA as compared to nuclear DNA. Mutat Res 1997; 391: 79-86
  • 55 Podratz JL, Knight AM, Ta LE et al. Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis 2011; 41: 661-668
  • 56 Yang Z, Schumaker LM, Egorin MJ et al. Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin Cancer Res 2006; 12: 5817-5825
  • 57 Hanigan MH, Devarajan P. Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 2003; 1: 47-61
  • 58 Lee RH, Song JM, Park MY et al. Cisplatin-induced apoptosis by translocation of endogenous Bax in mouse collecting duct cells. Biochem Pharmacol 2001; 62: 1013-1023
  • 59 Flatters SJL, Bennett GJ. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: Evidence for mitochondrial dysfunction. Pain 2006; 122: 245-257
  • 60 Komiya Y. Changes of fast axonal transport by taxol injected subepineurally into the rat sciatic nerve. Neurosci Res 1992; 14: 159-165
  • 61 Lapointe NE, Morfini G, Brady ST et al. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: Implications for chemotherapy-induced peripheral neuropathy. Neurotoxicology 2013; 37C: 231-239
  • 62 Shemesh OA, Spira ME. Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy. Acta Neuropathol (Berl) 2010; 119: 235-248
  • 63 Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443: 787-795
  • 64 Navarro A, Boveris A. The mitochondrial energy transduction system and the aging process. Am J Physiol Cell Physiol 2007; 292: C670-C686
  • 65 Russell JW, Golovoy D, Vincent AM et al. High glucose-induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 2002; 16: 1738-1748
  • 66 Nishida K, Kuchiiwa S, Oiso S et al. Up-regulation of matrix metalloproteinase-3 in the dorsal root ganglion of rats with paclitaxel-induced neuropathy. Cancer Sci 2008; 99: 1618-1625
  • 67 Villeneuve DJ, Hembruff SL, Veitch Z et al. cDNA microarray analysis of isogenic paclitaxel- and doxorubicin-resistant breast tumor cell lines reveals distinct drug-specific genetic signatures of resistance. Breast Cancer Res Treat 2006; 96: 17-39
  • 68 Gelderblom H, Verweij J, Nooter K et al. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 2001; 37: 1590-1598
  • 69 Smith NF, Acharya MR, Desai N et al. Identification of OATP1B3 as a high-affinity hepatocellular transporter of paclitaxel. Cancer Biol Ther 2005; 4: 815-818
  • 70 Smith NF, Marsh S, Scott-Horton TJ et al. Variants in the SLCO1B3 gene: interethnic distribution and association with paclitaxel pharmacokinetics. Clin Pharmacol Ther 2007; 81: 76-82
  • 71 Kobayashi Y, Ohshiro N, Sakai R et al. Transport mechanism and substrate specificity of human organic anion transporter 2 (hOat2 [SLC22A7]). J Pharm Pharmacol 2005; 57: 573-578
  • 72 Green LS, Donoso JA, Heller-Bettinger IE et al. Axonal transport disturbances in vincristine-induced peripheral neuropathy. Ann Neurol 1977; 1: 255-262
  • 73 McLeod JG, Penny R. Vincristine neuropathy: an electrophysiological and histological study. J Neurol Neurosurg Psychiatry 1969; 32: 297-304
  • 74 Authier N, Gillet JP, Fialip J et al. A New Animal Model of Vincristine-Induced Nociceptive Peripheral Neuropathy. NeuroToxicology 2003; 24: 797-805
  • 75 Topp KS, Tanner KD, Levine JD. Damage to the cytoskeleton of large diameter sensory neurons and myelinated axons in vincristine-induced painful peripheral neuropathy in the rat. J Comp Neurol 2000; 424: 563-576
  • 76 Poruchynsky MS, Sackett DL, Robey RW et al. Proteasome inhibitors increase tubulin polymerization and stabilization in tissue culture cells: a possible mechanism contributing to peripheral neuropathy and cellular toxicity following proteasome inhibition. Cell Cycle 2008; 7: 940-949
  • 77 Staff NP, Podratz JL, Grassner L et al. Bortezomib alters microtubule polymerization and axonal transport in rat dorsal root ganglion neurons. Neurotoxicology 2013; 39: 124-131
  • 78 Misko A, Sasaki Y, Tuck E et al. Mitofusin2 mutations disrupt axonal mitochondrial positioning and promote axon degeneration. J Neurosci 2012; 32: 4145-4155
  • 79 Zheng H, Xiao WH, Bennett GJ. Mitotoxicity and bortezomib-induced chronic painful peripheral neuropathy. Exp Neurol 2012; 238: 225-234
  • 80 Casafont I, Berciano MT, Lafarga M. Bortezomib induces the formation of nuclear poly(A) RNA granules enriched in Sam68 and PABPN1 in sensory ganglia neurons. Neurotox Res 2010; 17: 167-178
  • 81 Palanca A, Casafont I, Berciano MT et al. Proteasome inhibition induces DNA damage and reorganizes nuclear architecture and protein synthesis machinery in sensory ganglion neurons. Cell Mol Life Sci 2013;
  • 82 Alé A, Bruna J, Morell M et al. Treatment with anti-TNF alpha protects against the neuropathy induced by the proteasome inhibitor bortezomib in a mouse model. Exp Neurol 2014; 253: 165-173
  • 83 Lee HK, Shin YK, Jung J et al. Proteasome inhibition suppresses Schwann cell dedifferentiation in vitro and in vivo. Glia 2009; 57: 1825-1834
  • 84 Cano JR, Catalán B, Jara C. Neuronopathy due to cisplatin. Rev Neurol 1998; 27: 606-610
  • 85 Thompson SW, Davis LE, Kornfeld M et al. Cisplatin neuropathy. Clinical, electrophysiologic, morphologic, and toxicologic studies. Cancer 1984; 54: 1269-1275
  • 86 Argyriou AA, Bruna J, Marmiroli P et al. Chemotherapy-induced peripheral neurotoxicity (CIPN): An update. Crit Rev Oncol Hematol 2012; 82: 51-77
  • 87 van den Bent MJ. Prevention of Chemotherapy-Induced Neuropathy: Leukemia Inhibitory Factor. Clin Cancer Res 2005; 11: 1691-1693
  • 88 Hilkens PHE, Planting AST, van der Burg ME et al. Clinical course and risk factors of neurotoxicity following cisplatin in an intensive dosing schedule. Eur J Neurol 1994; 1: 45-50
  • 89 Roelofs RI, Hrushesky W, Rogin J et al. Peripheral sensory neuropathy and cisplatin chemotherapy. Neurology 1984; 34: 934-938
  • 90 Khrunin AV, Moisseev A, Gorbunova V et al. Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J 2010; 10: 54-61
  • 91 Ruzzo A, Graziano F, Loupakis F et al. Pharmacogenetic profiling in patients with advanced colorectal cancer treated with first-line FOLFOX-4 chemotherapy. J Clin Oncol 2007; 25: 1247-1254
  • 92 Argyriou AA, Koltzenburg M, Polychronopoulos P et al. Peripheral nerve damage associated with administration of taxanes in patients with cancer. Crit Rev Oncol Hematol 2008; 66: 218-228
  • 93 Lipton RB, Apfel SC, Dutcher JP et al. Taxol produces a predominantly sensory neuropathy. Neurology 1989; 39: 368-373
  • 94 Bennett GJ, Liu GK, Xiao WH et al. Terminal arbor degeneration (TAD): a novel lesion produced by the antineoplastic agent, paclitaxel. Eur J Neurosci 2011; 33: 1667-1676
  • 95 Gradishar WJ, Tjulandin S, Davidson N et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 2005; 23: 7794-7803
  • 96 Yardley DA. nab-Paclitaxel mechanisms of action and delivery. J Control Release 2013; 170: 365-372
  • 97 Baldwin RM, Owzar K, Zembutsu H et al. A genome-wide association study identifies novel loci for paclitaxel-induced sensory peripheral neuropathy in CALGB 40101. Clin Cancer Res 2012; 18: 5099-5109
  • 98 Beutler AS, Kulkarni AA, Kanwar R et al. Sequencing of Charcot-Marie-Tooth disease genes in a toxic polyneuropathy. Ann Neurol 2014; 76: 727-737
  • 99 Baudot C, Esteve C, Castro C et al. Two novel missense mutations in FGD4/FRABIN cause Charcot-Marie-Tooth type 4H (CMT4H). J Peripher Nerv Syst 2012; 17: 141-146
  • 100 Delague V, Jacquier A, Hamadouche T et al. Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H. Am J Hum Genet 2007; 81: 1-16
  • 101 Stendel C, Roos A, Deconinck T et al. Peripheral nerve demyelination caused by a mutant Rho GTPase guanine nucleotide exchange factor, frabin/FGD4. Am J Hum Genet 2007; 81: 158-164
  • 102 Postma TJ, Benard BA, Huijgens PC et al. Long-term effects of vincristine on the peripheral nervous system. J Neurooncol 1993; 15: 23-27
  • 103 Verstappen CCP, Koeppen S, Heimans JJ et al. Dose-related vincristine-induced peripheral neuropathy with unexpected off-therapy worsening. Neurology 2005; 64: 1076-1077
  • 104 Kornblith AB, Anderson J, Cella DF et al. Comparison of psychosocial adaptation and sexual function of survivors of advanced Hodgkin disease treated by MOPP, ABVD, or MOPP alternating with ABVD. Cancer 1992; 70: 2508-2516
  • 105 Casey EB, Jellife AM, Le Quesne PM et al. Vincristine neuropathy. Clinical and electrophysiological observations. Brain J Neurol 1973; 96: 69-86
  • 106 Ramchandren S, Leonard M, Mody RJ et al. Peripheral neuropathy in survivors of childhood acute lymphoblastic leukemia. J Peripher Nerv Syst 2009; 14: 184-189
  • 107 Broyl A, Corthals SL, Jongen JL et al. Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the HOVON-65/GMMG-HD4 trial. Lancet Oncol 2010; 11: 1057-1065
  • 108 Chauvenet AR, Shashi V, Selsky C et al. Vincristine-induced neuropathy as the initial presentation of charcot-marie-tooth disease in acute lymphoblastic leukemia: a Pediatric Oncology Group study. J Pediatr Hematol Oncol 2003; 25: 316-320
  • 109 Nishikawa T, Kawakami K, Kumamoto T et al. Severe neurotoxicities in a case of Charcot-Marie-Tooth disease type 2 caused by vincristine for acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2008; 30: 519-521
  • 110 Gilardini A, Marmiroli P, Cavaletti G. Proteasome inhibition: a promising strategy for treating cancer, but what about neurotoxicity?. Curr Med Chem 2008; 15: 3025-3035
  • 111 Richardson PG, Xie W, Mitsiades C et al. Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J Clin Oncol 2009; 27: 3518-3525
  • 112 Richardson PG, Sonneveld P, Schuster MW et al. Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. Br J Haematol 2009; 144: 895-903
  • 113 Lanzani F, Mattavelli L, Frigeni B et al. Role of a pre-existing neuropathy on the course of bortezomib-induced peripheral neurotoxicity. J Peripher Nerv Syst 2008; 13: 267-274
  • 114 Mateos MV, Hernández JM, Hernández MT et al. Bortezomib plus melphalan and prednisone in elderly untreated patients with multiple myeloma: results of a multicenter phase 1/2 study. Blood 2006; 108: 2165-2172
  • 115 James SE, Dunham M, Carrion-Jones M et al. Rho kinase inhibitor Y-27632 facilitates recovery from experimental peripheral neuropathy induced by anti-cancer drug cisplatin. Neurotoxicology 2010; 31: 188-194
  • 116 Khasabova IA, Khasabov S, Paz J et al. Cannabinoid type-1 receptor reduces pain and neurotoxicity produced by chemotherapy. J Neurosci 2012; 32: 7091-7101
  • 117 Ta LE, Schmelzer JD, Bieber AJ et al. A novel and selective poly (ADP-ribose) polymerase inhibitor ameliorates chemotherapy-induced painful neuropathy. PloS One 2013; 8: e54161
  • 118 Yoon MS, Bechmann L, Obermann M et al. Recombinant human erythropoietin counteracts cisplatin-induced visceral hyperalgesia. Neurosci Bull 2010; 26: 282-288
  • 119 Guo Y, Jones D, Palmer JL et al. Oral alpha-lipoic acid to prevent chemotherapy-induced peripheral neuropathy: a randomized, double-blind, placebo-controlled trial. Support Care Cancer 2013;
  • 120 Albers JW, Chaudhry V, Cavaletti G et al. Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev 2011; CD005228
  • 121 Albers JW, Chaudhry V, Cavaletti G et al. Interventions for preventing neuropathy caused by cisplatin and related compounds. Cochrane Database Syst Rev 2014; CD005228 3
  • 122 Ito S, Tajima K, Nogawa M et al. Etodolac, a cyclooxygenase-2 inhibitor, attenuates paclitaxel-induced peripheral neuropathy in a mouse model of mechanical allodynia. J Pharmacol Exp Ther 2012; 342: 53-60
  • 123 Mo M, Erdelyi I, Szigeti-Buck K et al. Prevention of paclitaxel-induced peripheral neuropathy by lithium pretreatment. FASEB J 2012; 26: 4696-4709
  • 124 Gidding CEM, Kellie SJ, Kamps WA et al. Vincristine revisited. Crit Rev Oncol Hematol 1999; 29: 267-287
  • 125 Alimoradi H, Pourmohammadi N, Mehr SE et al. Effects of lithium on peripheral neuropathy induced by vincristine in rats. Acta Med Iran 2012; 50: 373-379
  • 126 Barzegar-Fallah A, Alimoradi H, Mehrzadi S et al. The neuroprotective effect of tropisetron on vincristine-induced neurotoxicity. Neurotoxicology 2013; 41C: 1-8
  • 127 Geis C, Beyreuther BK, Stöhr T et al. Lacosamide has protective disease modifying properties in experimental vincristine neuropathy. Neuropharmacology 2011; 61: 600-607
  • 128 Kassem LA, Gamal El-Din MM, Yassin NA. Mechanisms of vincristine-induced neurotoxicity: Possible reversal by erythropoietin. Drug Discov Ther 2011; 5: 136-143
  • 129 Jeter A, Kang Y. Immune modulation therapy in the management of bortezomib-induced peripheral neuropathy. Exp Hematol Oncol 2012; 1: 1-2
  • 130 Tofthagen C, Visovsky C, Berry DL. Strength and balance training for adults with peripheral neuropathy and high risk of fall: current evidence and implications for future research. Oncol Nurs Forum 2012; 39: E416-E424
  • 131 Uçeyler N, Rogausch JP, Toyka KV et al. Differential expression of cytokines in painful and painless neuropathies. Neurology 2007; 69: 42-49
  • 132 Kaley TJ, Deangelis LM. Therapy of chemotherapy-induced peripheral neuropathy. Br J Haematol 2009; 145: 3-14
  • 133 Smith BH, Torrance N, Bennett MI et al. Health and Quality of Life Associated With Chronic Pain of Predominantly Neuropathic Origin in the Community. Clin J Pain 2007; 23: 143-149
  • 134 Smith EML, Cohen JA, Pett MA et al. The reliability and validity of a modified total neuropathy score-reduced and neuropathic pain severity items when used to measure chemotherapy-induced peripheral neuropathy in patients receiving taxanes and platinums. Cancer Nurs 2010; 33: 173-183
  • 135 Cramp F, Daniel J. Exercise for the management of cancer-related fatigue in adults. Cochrane Database Syst Rev 2008; CD006145
  • 136 Overgård M, Angelsen A, Lydersen S et al. Does physiotherapist-guided pelvic floor muscle training reduce urinary incontinence after radical prostatectomy? A randomised controlled trial. Eur Urol 2008; 54: 438-448
  • 137 Schmitz KH, Ahmed RL, Troxel A et al. Weight lifting in women with breast-cancer-related lymphedema. N Engl J Med 2009; 361: 664-673
  • 138 Mishra SI, Scherer RW, Snyder C et al. Exercise interventions on health-related quality of life for people with cancer during active treatment. Cochrane Database Syst Rev 2012; CD008465 8
  • 139 Streckmann F, Zopf EM, Lehmann HC et al. Exercise intervention studies in patients with peripheral neuropathy: a systematic review. Sports Med Auckl NZ 2014; 44: 1289-1304
  • 140 Streckmann F, Kneis S, Leifert JA et al. Exercise program improves therapy-related side-effects and quality of life in lymphoma patients undergoing therapy. Ann Oncol 2014; 25: 493-499
  • 141 Taube W, Gruber M, Beck S et al. Cortical and spinal adaptations induced by balance training: correlation between stance stability and corticospinal activation. Acta Physiol 2007; 189: 347-358
  • 142 Hopkins ME, Bucci DJ. BDNF expression in perirhinal cortex is associated with exercise-induced improvement in object recognition memory. Neurobiol Learn Mem 2010; 94: 278-284
  • 143 Pedersen BK. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem 2006; 42: 105-117
  • 144 Vega SR, Hollmann W, Strüder HK. Humoral Factors in Humans Participating in Different Types of Exercise and Training. In: Boecker H, Hillman CH, Scheef L, et al. (eds) Funct. Neuroimaging Exerc. Sport Sci. New York: Springer; 2012: 169-196
  • 145 Bergersen LH. Lactate transport and signaling in the brain: potential therapeutic targets and roles in body-brain interaction. J Cereb Blood Flow Metab 2015; 35: 176-185
  • 146 Bobylev I, Joshi AR, Barham M et al. Paclitaxel inhibits mRNA transport in axons. Neurobiol Dis 2015; 82: 321-331