Subscribe to RSS
DOI: 10.1055/s-0035-1553500
Evaluation of a Gadolinium-Based Nanoparticle (AGuIX) for Contrast-Enhanced MRI of the Liver in a Rat Model of Hepatic Colorectal Cancer Metastases at 9.4 Tesla
Evaluation eines Gadolinium-basierten Nanopartikels (AGuIX) zur kontrastmittelverstärkten MRT der Leber in Ratten mit hepatischen Metastasen eines kolorektalen Karzinoms bei 9,4 TeslaPublication History
17 January 2015
29 June 2015
Publication Date:
11 September 2015 (online)
Abstract
Purpose: The aim of this study was to compare a Gd-based nanoparticle (AGuIX) with a standard extracellular Gd-based contrast agent (Gd-DOTA) for MRI at 9.4 T in rats with hepatic colorectal cancer metastases.
Materials and Methods: 12 rats with hepatic metastases were subjected to MRI using a 9.4 T animal scanner. T1w self-gated FLASH sequences (TR/TE = 45/2.5 ms, alpha = 45°, TA = 1: 23 min, FOV = 5.12 × 5.12 cm2, matrix = 256 × 256) were acquired before and at 10 time points after contrast injection. Each animal received 0.1 mmol/kg BW Gd-DOTA i. v. 2 days later AGuIX was applied at 0.01 mmol/kg BW (representing equal Gd doses). The SNR of normal liver (SNRliver), hyper- and hypoenhancing parts of tumors (SNRtumor, hyperenh/SNRtumor, hypoenhanc), erector spinae muscle (SNRmuscle), CNR and lesion enhancement (LE) were calculated based on ROI measurements.
Results: Mean SNRliver (Gd-DOTA: 14.6 +/–0.7; AGuIX: 28.2 +/–2.6, p < 0.001), SNRtumor, hyperenhanc (Gd-DOTA: 18.6 +/–1.2; AGuIX: 29.6 +/–2.8, p < 0.001), SNRtumor, hypoenhanc (Gd-DOTA: 12.0 +/–0.7; AGuIX: 15.4 +/–0.7, p < 0.001), SNRmuscle (Gd-DOTA: 12.3 +/–0.3; AGuIX: 14.0 +/–0.7, p < 0.001), mean CNR (Gd-DOTA: –2.5 +/–0.2; AGuIX: –7.5 +/–1.0, p < 0.001) and LE (Gd-DOTA: 3.8 +/–0.7; AGuIX: 14.9 +/–2.8, p = 0.001) were significantly higher using AGuIX. Regardless of the larger molecular size, AGuIX demonstrates an early peak enhancement followed by a continuous washout.
Conclusion: AGuIX provides better enhancement at 9.4 T compared to Gd-DOTA for equal doses of applied Gd. This is based on the molecule structure and the subsequent increased interaction with protons leading to a higher relaxivity. AGuIX potentially ameliorates the conspicuity of focal liver lesions and may improve the sensitivity in diagnostic imaging of malignant hepatic tumors.
Key Points:
• AGuIX provides superior enhancement as compared to the extracellular compound Gd-DOTA at 9.4 T.
• AGuIX may improve the detection and diagnostic sensitivity of malignant focal liver lesions.
• The small size of AGuIX allows for fast renal clearance and prevents undesirable accumulation in the body.
Citation Format:
• Fries P, Morr D, Müller A et al. Evaluation of a Gadolinium-Based Nanoparticle (AGuIX) for Contrast-Enhanced MRI of the Liver in a Rat Model of Hepatic Colorectal Cancer Metastases at 9.4 Tesla. Fortschr Röntgenstr 2015; 187: 1108 – 1115
Zusammenfassung
Ziel: Vergleich eines Gd-basierten Nanopartikels (AGuIX) mit einem extrazellulären, niedermolekularen Kontrastmittel (Gd-DOTA) zur MRT der Leber bei 9,4 T in Ratten mit hepatischen Metastasen eines kolorektalen Karzinoms.
Material und Methoden: 12 Ratten mit hepatischen Metastasen wurden mittels eines 9,4 T Tierscanners untersucht. Es wurden T1-gewichtete FLASH-Sequenzen (TR/TE = 45/2,5 ms, Flipwinkel = 45°, TA = 1: 23 min, FOV = 5,12 × 5,12 cm2, Matrix = 256 × 256) vor und an 10 Zeitpunkten nach KM-Gabe mittels Selbstgating akquiriert. Jedes Versuchstier erhielt 0,1 mmol/kg KG Gd-DOTA i. v. Zwei Tage später wurden die Untersuchungen nach Gabe von 0,01 mmol/kg KG AGuIX (entsprechend identischen Dosierungen an Gd) wiederholt. SNR von normalem Lebergewebe (SNRliver), stark und gering KM-affinen Anteilen der Tumoren (SNRtumor, hyperenh/SNRtumor, hypoenhanc), des Musculus erector spinae (SNRmuscle), CNR und Läsionsenhancement (LE) wurden basierend auf ROI-Messungen berechnet.
Ergebnisse: Die Mittelwerte des SNRliver (Gd-DOTA: 14,6 +/–0,7; AGuIX: 28,2 +/–2,6; p < 0,001), SNRtumor, hyperenhanc (Gd-DOTA: 18,6 +/–1,2; AGuIX: 29,6 +/–2,8, p < 0,001), SNRtumor, hypoenhanc (Gd-DOTA: 12,0 +/–0,7; AGuIX: 15,4 +/–0,7, p < 0,001), SNRmuscle (Gd-DOTA: 12,3 +/–0,3; AGuIX: 14,0 +/–0,7, p < 0,001), des CNR (Gd-DOTA: –2,5 +/–0,2; AGuIX: –7,5 +/–1,0, p < 0,001) und des LE (Gd-DOTA: 3,8 +/–0,7; AGuIX: 14,9 +/–2,8/p = 0,001) waren nach Gabe von AGuIX signifikant höher. Trotz der höheren Molekülmasse zeigt AGuIX analog zum niedermolekularen Komplex Gd-DOTA eine maximale Signalanreicherung unmittelbar nach Injektion gefolgt von einem kontinuierlichen Auswaschen.
Schlussfolgerungen: AGuIX zeigt ein besseres Enhancement als Gd-DOTA bei identischer Gd-Dosierungen. Dies basiert auf der Molekülstruktur und der konsekutiv verbesserten Interaktion mit Protonen, was zu einer Erhöhung der Relaxivität führt. AGuIX kann potenziell die Erkennbarkeit fokaler Leberläsionen und damit die Sensitivität bei der Diagnostik maligner Lebertumoren verbessern.
Kernaussagen:
• AGuIX zeigt bei 9,4 T bessere Kontrasteigenschaften im Vergleich zu dem extrazellulären Kontrastmittel Gd-DOTA.
• AGuIX kann dazu beitragen die Detektion fokaler Leberläsionen und damit auch die Sensitivität der MRT bei malignen Raumforderungen der Leber zu verbessern.
• Aufgrund der geringen Molekülgröße wird AGuIX schnell renal ausgeschieden und zeigt keine unerwünschte Akkumulation im Körper.
-
References
- 1 Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010; 9: 615-627
- 2 Cuenca AG, Jiang H, Hochwald SN et al. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 2006; 107: 459-466
- 3 Kim J, Piao Y, Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 2009; 38: 372-390
- 4 Mignot A, Truillet C, Lux F et al. A top-down synthesis route to ultrasmall multifunctional Gd-based silica nanoparticles for theranostic applications. Chemistry 2013; 19: 6122-6136
- 5 Choi HS, Liu W, Misra P et al. Renal clearance of quantum dots. Nat Biotechnol 2007; 25: 1165-1170
- 6 Benezra M, Penate-Medina O, Zanzonico PB et al. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 2011; 121: 2768-2780
- 7 Lux F, Mignot A, Mowat P et al. Ultrasmall rigid particles as multimodal probes for medical applications. Angew Chem Int Ed Engl 2011; 50: 12299-12303
- 8 Fries P, Morelli JN, Lux F et al. The issues and tentative solutions for contrast-enhanced magnetic resonance imaging at ultra-high field strength. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2014; 6: 559-573
- 9 Noebauer-Huhmann IM, Szomolanyi P, Juras V et al. Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma. Invest Radiol 2010; 45: 554-558
- 10 Rohrer M, Bauer H, Mintorovitch J et al. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 2005; 40: 715-724
- 11 Reeder SB, Wintersperger BJ, Dietrich O et al. Practical approaches to the evaluation of signal-to-noise ratio performance with parallel imaging: application with cardiac imaging and a 32-channel cardiac coil. Magn Reson Med 2005; 54: 748-754
- 12 Monsky WL, Vien DS, Link DP. Nanotechnology development and utilization: a primer for diagnostic and interventional radiologists. Radiographics 2011; 31: 1449-1462
- 13 Cai W, Chen K, Li ZB et al. Dual-function probe for PET and near-infrared fluorescence imaging of tumor vasculature. J Nucl Med 2007; 48: 1862-1870
- 14 Alric C, Taleb J, LeDuc G et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J Am Chem Soc 2008; 130: 5908-5915
- 15 Green DL, Lin JS, Lam YF et al. Size, volume fraction, and nucleation of Stober silica nanoparticles. J Colloid Interface Sci 2003; 266: 346-358
- 16 Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 1968; 26: 62-69
- 17 Bianchi A, Lux F, Tillement O et al. Contrast enhanced lung MRI in mice using ultra-short echo time radial imaging and intratracheally administrated Gd-DOTA-based nanoparticles. Magn Reson Med 2013; 70: 1419-1426
- 18 Miladi I, Le Duc G, Kryza D et al. Biodistribution of ultra small gadolinium-based nanoparticles as theranostic agent: Application to brain tumors. J Biomater Appl 2013; 28: 385-394
- 19 Le Duc G, Miladi I, Alric C et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 2011; 5: 9566-9574
- 20 Henig J, Toth E, Engelmann J et al. Macrocyclic Gd3+ chelates attached to a silsesquioxane core as potential magnetic resonance imaging contrast agents: synthesis, physicochemical characterization, and stability studies. Inorg Chem 2010; 49: 6124-6138
- 21 Ananta JS, Godin B, Sethi R et al. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat Nanotechnol 2010; 5: 815-821
- 22 Voisin P, Ribot EJ, Miraux S et al. Use of lanthanide-grafted inorganic nanoparticles as effective contrast agents for cellular uptake imaging. Bioconjug Chem 2007; 18: 1053-1063
- 23 Martinez-Hernandez A, Amenta PS. The hepatic extracellular matrix. I. Components and distribution in normal liver. Virchows Arch A Pathol Anat Histopathol 1993; 423: 1-11
- 24 Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5: 161-171