Ultrasound Int Open 2015; 01(01): E8-E11
DOI: 10.1055/s-0035-1555765
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Single Nucleotide Polymorphism-Based Analysis of Cell-Free Fetal DNA in 3000 Cases from Germany and Austria

B. Eiben
1   Institut für Klinische Genetik Nordrhein, Essen, Germany
,
M. Krapp
2   amedes Hamburg, Zentrum für Endokrinologie, Kinderwunsch und Pränatale Medizin, Hamburg, Germany
,
H. Borth
3   Genetic Department, amedes Institut f. Labormedizin und Klinische Genetik Institut f. Labormedizin und Klinische Genetik Rhein/ Ruhr MVZ GmbH, Essen, Germany
,
N. Kutur
4   Genetic Department, amedes Institut f. Labormedizin und Klinische Genetik Rhein/ Ruhr MVZ GmbH, Essen, Germany
,
P. Kreiselmaier
5   MVZ FCH, amedes Hamburg, Zentrum für Pränatale Medizin, Hamburg, Germany
,
R. Glaubitz
6   amedes Labor, Human Genetics, Hannover, Germany
,
J. Deutinger
7   UFK Wien, Dep. for Prenatal Diagnostic and Therapy, Wien, Austria
,
E. Merz
8   KH Nordwest, Obstetrics & Gynecology, Frankfurt/Main, Germany
› Author Affiliations
Further Information

Publication History

received 15 January 2015

accepted 29 May 2015

Publication Date:
26 June 2015 (online)

Abstract

Background & Patient:

Data from 3 008 patients, who underwent single-nucleotide-polymorphism (SNP)-based noninvasive prenatal testing (NIPT) are presented.

Method:

The PanoramaTM test (Natera, San Carlos, CA) was used to analyze cell-free fetal DNA from maternal blood for trisomies 21, 18, and 13, triploidy and sex-chromosome aneuploidies.

Result:

In 2 942 (97.8%) cases, a result was obtained. The average fetal fraction was 10.2%. A high-risk result for fetal aneuploidy was made for 65 (2.2%) cases. In 59 (90.8%) of these cases, invasive testing confirmed the aneuploidy. There were 6 false-positive cases. In the false-positive group, the fetal fraction was significantly lower. The overall positive predictive value was 90.8%. No false-negative cases were reported but many patients in this study have not delivered yet. Therefore, exact data cannot be given for potential false-negative cases.

Conclusion:

SNP-based NIPT is a reliable screening method for evaluating the risk of aneuploidies of chromosomes 21, 18 and 13. By using NIPT, the number of invasive procedures may be reduced significantly compared to maternal age and first-trimester screening.

 
  • References

  • 1 Gil MM, Akolekar R, Quezada MS et al. Analysis of Cell-Free DNA in Maternal Blood in Screening for Aneuploidies: Meta-Analysis. Fetal Diagn Ther 2014; 35: 156-173
  • 2 Palomaki GE, Deciu C, Kloza EM et al. DNA sequencing of maternal plasma reliably identifies trisomy 18 and trisomy 13 as well as Down syndrome: an international collaborative study. Genet Med 2012; 14: 296-305
  • 3 Palomaki GE, Kloza EM, Lambert-Messerlian GM et al. DNA sequencing of maternal plasma to detect Down syndrome: an international clinical validation study. Genet Med 2011; 13: 913-920
  • 4 Norton ME, Brar H, Weiss J et al. Non-Invasive Chromosomal Evaluation (NICE) Study: results of a multicenter prospective cohort study for detection of fetal trisomy 21 and trisomy 18. Am J Obstet Gynecol 2012; 207: 137.e1-137.e8
  • 5 Sparks AB, Struble CA, Wang ET et al. Noninvasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: evaluation for trisomy 21 and trisomy 18. Am J Obstet Gynecol 2012; 206: 319.e1-319.e9
  • 6 Sparks AB, Wang ET, Struble CA et al. Selective analysis of cell-free DNA in maternal blood for evaluation of fetal trisomy. Prenat Diagn 2012; 32: 3-9
  • 7 Zimmermann B, Hill M, Gemelos G et al. Noninvasive prenatal aneuploidy testing of chromosomes 13, 18, 21, X, and Y, using targeted sequencing of polymorphic loci. Prenat Diagn 2012; 32: 1233-1241
  • 8 Samango-Sprouse C, Banjevic M, Ryan A et al. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy. Prenat Diagn 2013; 33: 643-649
  • 9 Nicolaides KH, Syngelaki A, Gil MD et al. Prenatal Detection of Fetal Triploidy from Cell-Free DNA Testing in Maternal Blood. Fetal Diagn Ther 2014; 35: 212-217
  • 10 Nicolaides KH, Syngelaki A, Gil M et al. Validation of targeted sequencing of single-nucleotide polymorphisms for non-invasive prenatal detection of aneuploidy of chromosomes 13, 18, 21, X, and Y. Prenat Diagn 2013; 33: 575-579
  • 11 Samango-Sprouse C, Banjevic M, Ryan A et al. SNP-based non-invasive prenatal testing detects sex chromosome aneuploidies with high accuracy. Prenat Diagn 2013; 33: 643-649
  • 12 Stellungnahme der Deutschen Gesellschaft für Humangenetik zur Analyse fetaler DNA aus dem mütterlichen Blut. www.gfhev.de/leitlinien 2013
  • 13 Eiben B, Thode C, Merz E. Nichtinvasive Pränataldiagnostik-Serumtestsyteme zur Erfassung von Chromosomenanomalien. Gynäkologie+Geburtshilfe 2013; 18: 2-4
  • 14 Salomon LJ, Alfirevic Z, Audibert F et al. ISUOG consensus statement on the impact of non-invasive prenatal testing (NIPT) on prenatal ultrasound practice. Ultrasound Obstet Gynecol 2014; 44: 122-123
  • 15 Wegner R-D, Stumm M. Zytogenetische Methoden in der Pränataldiagnostik. medgen 2011; 23: 457-462
  • 16 Hahnemann JM, Vejerslev LO. European collaborative research on mosaicism in CVS (EUCROMIC) – fetal and extrafetal cell lineages in 192 gestations with CVS mosaicism involving single autosomal trisomy. Am J Med Genet 1997; 70: 179-187
  • 17 Grati FR, Malvestiti F, Ferreira JCPB et al. The role of feto-placental mosacism in false positive and false negative non-invasive prenatal screening (NIPS) results. Genet Med 2014; DOI: 10.1038/gim.2014.3. [Epub ahead of print]
  • 18 Eiben B, Trawicki W, Haupt A et al. Discordant karyotypes in CVS and amniocenteses using cytogenetic and Fluorescence in Situ Hybridisation (FiSH) analyses. Prenat Diagn 1998; 18: 87-89
  • 19 Kalousek DK, Barrett IJ, McGillivray BC. Placental mosaicism and intrauterine survival of trisomies 13 and 18. Am J Hum Genet 1989; 44: 338-343
  • 20 Nicolaides KH, Syngelaki A, Gil M et al. Validation of targeted sequencing of single-nucleotide polymorphisms for non-invasive prenatal detection of aneuploidy of chromosomes 13, 18, 21, X, and Y. Prenat Diagn 2013; 33: 575-579
  • 21 Mennuti MT, Athena MC, Morrissette JJD et al. Is it time to sound an alarm about false-positive cell-free DNA testing for fetal aneuploidy?. Am J Obstet Gynecol 2013; 209: 415-419
  • 22 Musci T. Letter to the editor. Prenatal Perspectives 2013; 1: 5
  • 23 Pergament E, Cuckle H, Zimmermann B et al. Single-nucleotide polymorphism-based noninvasive prenatal screening in a high-risk and low-risk cohort. OBSTETRICS & GYNECOLOGY 2014; 124: 210-218
  • 24 Rava RP, Srinivasan A, Sehnert AJ et al. Circulating Fetal Cell-Free DNA Fractions Differ in Autosomal Aneuploidies and Monosomy X. Clinical Chemistry 2013;
  • 25 Dar P, Curnow KJ, Gross SJ et al. Clinical experience and follow-up with large scale single-nucleotide polymorphism-based non-invasive prenatal aneuploidy testing. American Journal of Obstetrics and Gynecology 2014; DOI: 10.1016/j.ajog.2014.08.006.
  • 26 Bianchi DW, Parker RL, Wentworth J et al. for the CARE Study Group . DNA Sequencing versus Standard Prenatal Aneuploidy Screening. N Engl J Med 2014; 370: 799-808
  • 27 Kagan KO, Eiben B, Kozlowski P. Combined First Trimester Screening and Cell-Free Fetal DNA – “Next Generation Screening. Ultraschall Med 2014; 35: 229-236