Int J Sports Med 2016; 37(03): 183-190
DOI: 10.1055/s-0035-1555933
Physiology & Biochemistry
© Georg Thieme Verlag KG Stuttgart · New York

A New Surgical Model of Skeletal Muscle Injuries in Rats Reproduces Human Sports Lesions

P. Contreras-Muñoz
1   Leitat Foundation, Leitat Technological Center, Carrer de la Innovació 2, Terrassa, Barcelona, Spain
2   Bioengineering, Orthopedics and Pediatric Surgery Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
,
A. Fernández-Martín
2   Bioengineering, Orthopedics and Pediatric Surgery Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
,
R. Torrella
3   Physiology Department, Universitat de Barcelona, Barcelona, Spain
,
X. Serres
4   Ultrasound Unit, Department of Radiology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
,
M. De la Varga
1   Leitat Foundation, Leitat Technological Center, Carrer de la Innovació 2, Terrassa, Barcelona, Spain
,
G. Viscor
3   Physiology Department, Universitat de Barcelona, Barcelona, Spain
,
T. A. H. Järvinen
5   School of Medicine, University of Tampere, Tampere, Finland
6   Department of Orthopedics & Traumatology, Tampere University Hospital, Tampere, Finland
,
V. Martínez-Ibáñez
2   Bioengineering, Orthopedics and Pediatric Surgery Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
,
J. L. Peiró
2   Bioengineering, Orthopedics and Pediatric Surgery Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
7   Translational Research in Fetal Surgery for Congenital Malformations Laboratory, Center for Fetal, Cellular and Molecular Therapy, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, Ohio, USA
,
G. Rodas
1   Leitat Foundation, Leitat Technological Center, Carrer de la Innovació 2, Terrassa, Barcelona, Spain
8   Medical Services, Futbol Club Barcelona, Ciutat Esportiva Futbol Club Barcelona, Barcelona, Spain
,
M. Marotta
1   Leitat Foundation, Leitat Technological Center, Carrer de la Innovació 2, Terrassa, Barcelona, Spain
2   Bioengineering, Orthopedics and Pediatric Surgery Laboratory, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autonoma de Barcelona, Barcelona, Spain
› Author Affiliations
Further Information

Publication History



accepted after revision 18 June 2015

Publication Date:
15 December 2015 (online)

Abstract

Skeletal muscle injuries are the most common sports-related injuries in sports medicine. In this work, we have generated a new surgically-induced skeletal muscle injury in rats, by using a biopsy needle, which could be easily reproduced and highly mimics skeletal muscle lesions detected in human athletes. By means of histology, immunofluorescence and MRI imaging, we corroborated that our model reproduced the necrosis, inflammation and regeneration processes observed in dystrophic mdx-mice, a model of spontaneous muscle injury, and realistically mimicked the muscle lesions observed in professional athletes. Surgically-injured rat skeletal muscles demonstrated the longitudinal process of muscle regeneration and fibrogenesis as stated by Myosin Heavy Chain developmental (MHCd) and collagen-I protein expression. MRI imaging analysis demonstrated that our muscle injury model reproduces the grade I-II type lesions detected in professional soccer players, including edema around the central tendon and the typically high signal feather shape along muscle fibers. A significant reduction of 30% in maximum tetanus force was also registered after 2 weeks of muscle injury. This new model represents an excellent approach to the study of the mechanisms of muscle injury and repair, and could open new avenues for developing innovative therapeutic approaches to skeletal muscle regeneration in sports medicine.

 
  • References

  • 1 Aspelin P, Ekberg O, Thorsson O, Wilhelmsson M, Westlin N. Ultrasound examination of soft tissue injury of the lower limb in athletes. Am J Sports Med 1992; 20: 601-603
  • 2 Best TM, Hunter KD. Muscle injury and repair. Phys Med Rehabil Clin N Am 2000; 11: 251-266
  • 3 Bischoff R In: Engel AG, Franszini-Armstrong C. (eds.) The satellite cell and muscle regeneration. In Myogenesis. New York: McGraw-Hil; 1994: 97-118
  • 4 Bubnov R, Yevseenko V, Semeniv I. Ultrasound guided injections of platelets rich plasma for muscle injury in professional athletes. Comparative study. Med Ultrason 2013; 15: 101-105
  • 5 Chan Y-S, Li Y, Foster W, Fu FH, Huard J. The use of suramin, an antifibrotic agent, to improve muscle recovery after strain injury. Am J Sports Med 2005; 33: 43-51
  • 6 Chargé SBP, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev 2004; 84: 209-238
  • 7 Ebbeling CB, Clarkson PM. Exercise-induced muscle damage and adaptation. Sports Med 1989; 7: 207-234
  • 8 Goetsch SC, Hawke TJ, Gallardo TD, Richardson JA, Garry DJ. Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics 2003; 14: 261-271
  • 9 Grounds MD, Yablonka-Reuveni Z. Molecular and cell biology of skeletal muscle regeneration. Mol Cell Biol Hum Dis Ser 1993; 3: 210-256
  • 10 Hamilton B, Valle X, Rodas G, Til L, Pruna Grive R, Gutierrez Rincon Ja, Tol JL. Classification and grading of muscle injuries: a narrative review. Br J Sports Med 2014; 49: 306
  • 11 Harris JB, Johnson MA. Further observations on the pathological responses of rat skeletal muscle to toxins isolated from the venom of the Australian tiger snake, Notechis scutatus scutatus. Clin Exp Pharmacol Physiol 1978; 5: 587-600
  • 12 Harriss DJ, Atkinson G. Ethical standards in sport and exercise science research: 2014 update. Int J Sports Med 2013; 34: 1025-1028
  • 13 Hawke TJ, Garry DJ. Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 2001; 91: 534-551
  • 14 Horio T, Fujita M, Tanaka Y, Ishihara M, Kishimoto S, Nakamura S, Hase K, Maehara T. Efficacy of fragmin/protamine microparticles containing fibroblast growth factor-2 (F/P MPs/FGF-2) to induce collateral vessels in a rabbit model of hindlimb ischemia. J Vasc Surg 2011; 54: 791-798
  • 15 Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 2002; 84-A: 822-832
  • 16 Hurme T, Kalimo H, Lehto M, Järvinen M. Healing of skeletal muscle injury: an ultrastructural and immunohistochemical study. Med Sci Sports Exerc 1991; 23: 801-810
  • 17 Järvinen TA, Järvinen M, Kalimo H. Regeneration of injured skeletal muscle after the injury. Muscles Ligaments Tendons J 2013; 3: 337-345
  • 18 Järvinen TAH, Järvinen TLN, Kääriäinen M, Aärimaa V, Vaittinen S, Kalimo H, Järvinen M. Muscle injuries: optimising recovery. Best Pract Res Clin Rheumatol 2007; 21: 317-331
  • 19 Järvinen TAH, Järvinen TLN, Kääriäinen M, Kalimo H, Järvinen M. Muscle injuries: biology and treatment. Am J Sports Med 2005; 33: 745-764
  • 20 Järvinen TAH, Ruoslahti E. Target-seeking antifibrotic compound enhances wound healing and suppresses scar formation in mice. Proc Natl Acad Sci USA 2010; 107: 21671-21676
  • 21 Lehto MU, Järvinen MJ. Muscle injuries, their healing process and treatment. Ann Chir Gynaecol 1991; 80: 102-108
  • 22 Marotta M, Sarria Y, Ruiz-Roig C, Munell F, Roig-Quilis M. Laser microdissection-based expression analysis of key genes involved in muscle regeneration in mdx mice. Neuromuscul Disord 2007; 17: 707-718
  • 23 Mauch F, Best R, Bauer G. Current treatment concepts for muscular injuries. Unfallchirurg 2013; 116: 488-496
  • 24 McNeill Ingham SJ, de Pochini AC, de Oliveira DA, Garcia Lisboa BC, Beutel A, Valero-Lapchik VB, Ferreira AM, Abdalla RJ, Cohen M, Han SW. Bupivacaine Injection leads to muscle force reduction and histologic changes in a murine model. PM&R 2011; 3: 1106-1109
  • 25 Meeson AP, Hawke TJ, Graham S, Jiang N, Elterman J, Hutcheson K, Dimaio JM, Gallardo TD, Garry DJ. Cellular and molecular regulation of skeletal muscle side population cells. Stem Cells 2004; 22: 1305-1320
  • 26 Mitchell CA, McGeachie JK, Grounds MD. Cellular differences in the regeneration of murine skeletal muscle: A quantitative histological study in SJL/J and BALB/c mice. Cell Tissue Res 1992; 269: 159-166
  • 27 Pollock N, James SLJ, Lee JC, Chakraverty R. British athletics muscle injury classification: a new grading system. Br J Sports Med 2014; 48: 1347-1351
  • 28 Rantanen J, Hurme T, Lukka R, Heino J, Kalimo H. Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest 1995; 72: 341-347
  • 29 Roig-Quilis M, Roma J, Marotta M, Sarria Y, Fargas A. Muscle regeneration following glycerol injection mimic that of mdx-mice degenerative-regenerative groups. Rev Neurol 2004; 38: 1101-1108
  • 30 Scholz D, Thomas S, Sass S, Podzuweit T. Angiogenesis and myogenesis as two facets of inflammatory post-ischemic tissue regeneration. Mol Cell Biochem 2003; 246: 57-67
  • 31 Schultz E, McCormick KM. Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol 1994; 123: 213-257
  • 32 De Smet AA, Best TM. MR imaging of the distribution and location of acute hamstring injuries in athletes. Am J Roentgenol 2000; 174: 393-399
  • 33 Timpka T, Jacobsson J, Bickenbach J, Finch CF, Ekberg J, Nordenfelt L. What is a sports injury?. Sports Med 2014; 44: 423-428
  • 34 Vaittinen S, Hurme T, Rantanen J, Kalimo H. Transected myofibres may remain permanently divided in two parts. Neuromuscul Disord 2002; 12: 584-587
  • 35 Wagatsuma A. Endogenous expression of angiogenesis-related factors in response to muscle injury. Mol Cell Biochem 2007; 298: 151-159
  • 36 Whalen RG, Harris JB, Butler-Browne GS, Sesodia S. Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles. Dev Biol 1990; 141: 24-40
  • 37 Woods C, Hawkins RD, Maltby S, Hulse M, Thomas A, Hodson A. The Football Association Medical Research Programme: an audit of injuries in professional football – analysis of hamstring injuries. Br J Sports Med 2004; 38: 36-41
  • 38 Woolf AD, Pfleger B. Burden of major musculoskeletal conditions. Bull World Health Organ 2003; 81: 646-656
  • 39 Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA, Williams RS. Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 2003; 278: 8826-8836