Planta Medica Letters 2015; 2(01): e28-e30
DOI: 10.1055/s-0035-1557793
Letter
Georg Thieme Verlag KG Stuttgart · New York

Rottlerin Derivatives and Other Compounds from Mallotus philippinensis Fruits and Their Potential Antimycobactrial Activity

Rima Bharadwaj
1   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India
,
Ashish A. Chinchansure
1   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India
,
Roshan R. Kulkarni
1   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India
,
Manisha Arkile
2   Combi Chem-Bio Resource Centre, CSIR-National Chemical Laboratory, Pune, India
,
Dhiman Sarkar
2   Combi Chem-Bio Resource Centre, CSIR-National Chemical Laboratory, Pune, India
,
Swati P. Joshi
1   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India
› Author Affiliations
Further Information

Publication History

received 14 May 2015
revised 30 June 2015

accepted 30 June 2015

Publication Date:
04 August 2015 (online)

Abstract

The methanolic extract of the fruits of Mallotus philippinensis afforded 13 compounds, 7,11-diketo-lanost-3-ol (1, as acetate), lanosta-8-ene-3β-ol (2, as acetate), pregnenolone (3, as acetate), trans-chalcone (4), kamalachalcone E (5), oleanolic acid (6), gallic acid (7), kaempferol (8), myricetin (9), 1-(5,7-dihydroxy-2,2,6-trimethyl-2 H-1-benzopyran-8-yl)-3-phenyl-2-propen-1-one (10), 4′-hydroxyisorottlerin (11), rottlerin (12), and shikimic acid (13). Compound 1 was isolated as a new natural product and its structure was elucidated by 1D and 2D nuclear magnetic resonance analyses including heteronuclear single quantum correlation, heteronuclear multiple-bond correlation, correlation spectroscopy, and nuclear Overhauser effect spectroscopy experiments. All of the isolated compounds were evaluated for their antimycobacterium activity against Mycobacterium tuberculosis H37Ra. Compounds 11 and 12 exhibited promising inhibitory activity with IC50 values of 0.89 ± 0.33 µg/mL (MIC 2.06 ± 0.41 µg/mL) and 7.59 ± 0.42 µg/mL (MIC 11.56 ± 0.35 µg/mL), respectively.

Supporting Information

 
  • References

  • 1 Thacker MS, Lala SR, Krishnan MS, Prashad B, Chopra RN, Santapau H, Sastri BN. The wealth of India: A dictionary of Indian raw materials & industrial products. New Dehli: CSIR; 1998: 229
  • 2 Singh NP, Lakshminarasimhan P, Karthikeyan S, Prasanna PV. Flora of Maharashtra State, Dicotyledons. Vol. 2. Calcutta: Botanical Survey of India; 2001: 894
  • 3 Bandopadhyay M, Dhingra VK, Mukerjee SK, Pardeshi NP, Seshadri TR. Triterpenoid and other components of Mallotus Philippinensis . Phytochemistry 1972; 11: 1511
  • 4 Nair SP, Rao JM. Kamaladiol-3-acetate from the stem bark of Mallotus philippinensis . Phytochemistry 1993; 32: 407-409
  • 5 Ahluwalia VK, Sharma ND, Mittal B, Gupta SR. Novel prenylated flavanoids from Mallotus philippensis . Indian J Chem 1988; 27?B: 238-241
  • 6 Lounasmaa M, Widén CJ, Tuuf CM, Huhtikangas A. On the phloroglucinol derivatives of mallotus philippiners . Planta Med 1975; 28: 16-31
  • 7 Crombie L, Green CL, Tuck B, Whiting DA. Constituents of kamala. Isolation and structure of two new components. J Chem Soc C 1968; 2625-2630
  • 8 Widén CJ, Puri HS. Natural occurrence and chemical variability of phloroglucinols in kamala. Planta Med 1980; 40: 284-287
  • 9 Tanaka T, Ito T, Iinuma M, Takahashi Y, Naganawa H. Dimeric chalcone derivatives from Mallotus philippensis . Phytochemistry 1998; 48: 1423-1427
  • 10 Furasawa M, Ido Y, Tanaka T, Ito T, Nakaya K, Ibrahim I, Ohyama M, Iinuma M, Shirataka Y, Takahashi Y. Novel, complex flavonoids from Mallotus philippensis (kamala tree). Helv Chim Acta 2005; 88: 1048-1058
  • 11 Kulkarni RR, Tupe SG, Gample SP, Chandgude MG, Sarkar D, Deshpande MV, Joshi SP. Antifungal dimeric chalcone derivative kamalachalcone E from Mallotus philippinensis . Nat Prod Res 2014; 28: 245-250
  • 12 Brieskorn CH, Dertinger G. Neue Carbonylderivate des Lanosterols aus Wollwachs. Tet Lett 1968; 59: 6237-6239
  • 13 Emmons GT, Wilson WK, Schroepfer jr. G. 1H and 13C NMR assignments for lanostan-3β-ol derivatives: Revised assignments for lanosterol. J Magn Reson Chem 1989; 27: 1012-1024
  • 14 Ishar MPS, Girdhar NK, Kumar K, Kaur S. Investigations on photochemical linking of steroids with amino acids: Irradiation of α, β unsaturated steroidal ketones in the presence of amino acids in aqueous medium. Indian J Chem 1999; 38B: 1253-1261
  • 15 Ragasa CY, Lim K. Secondary metabolites from Schefflera odorata Blanco. Philipp J Sci 2005; 134: 63-67
  • 16 Eldahshan OA. Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt. Curr Res J Biol Sci 2011; 3: 52-55
  • 17 Panichayupakaranant P, Kaewsuwan S. Bioassay-guided isolation of the antioxidant constituent from Cassia alata L. leaves. J Sci Technol 2004; 26: 103-107
  • 18 Rashed K, Zhang XJ, Luo MT, Zheng YT. Anti-HIV-1 activity of phenolic compounds isolated from Diospyros lotus fruits. Phytopharmacology 2012; 3: 199-207
  • 19 Bochkov DV, Sysolyatin SV, Kalashnikov AI, Surmacheva IA. Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources. J Chem Biol 2012; 5: 5-17
  • 20 Borges-Argáez R, Díaz MEP, Waterman PG, Peña-Rodríguez LM. Additional flavonoids from Lonchocarpus yucatanensis and L. xuul . J Braz Chem Soc 2005; 5: 1078-1081
  • 21 Yenesew A, Twinomuhwezi H, Kabaru JM, Akala HM, Kiremire BT, Heydenreich M, Peter MG, Eyase FL, Waters NC, Walsh DS. Antiplasmodial and larvicidal flavonoids from Derristrifoliata . Bull Chem Soc Ethiop 2009; 3: 409-414
  • 22 Yenesew A, Midiwo JO, Miessner M, Heydenreich M, Peter MG. Two prenylated flavanones from stem bark of Erythrina burttii . Phytochemistry 1998; 48: 1439-1443
  • 23 Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 1993; 14: 359-364
  • 24 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63