Planta Med 2015; 81(15): 1326-1338
DOI: 10.1055/s-0035-1557876
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Expanding the Chemical Diversity of the Antitumoral Compound Mithramycin by Combinatorial Biosynthesis and Biocatalysis: The Quest for Mithralogs with Improved Therapeutic Window

Carmen Méndez
1   Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I. U. O. P.A), Universidad de Oviedo, Oviedo, Spain
,
Javier González-Sabín
2   EntreChem S. L., Edificio Científico Tecnológico, Campus El Cristo, Oviedo, Spain
,
Francisco Morís
2   EntreChem S. L., Edificio Científico Tecnológico, Campus El Cristo, Oviedo, Spain
,
José A. Salas
1   Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I. U. O. P.A), Universidad de Oviedo, Oviedo, Spain
› Author Affiliations
Further Information

Publication History

received 18 November 2014
revised 16 June 2015

accepted 22 July 2015

Publication Date:
21 September 2015 (online)

Abstract

Mithramycin is an antitumor compound of the aureolic acid family produced by Streptomyces argillaceus. It has been used to treat several types of cancer including testicular carcinoma, chronic and acute myeloid leukemia as well as hypercalcemias and Pagetʼs disease. Although the use of mithramycin in humans has been limited because its side effects, in recent years a renewed interest has arisen since new uses and activities have been ascribed to it. Chemically, mithramycin is characterized by a tricyclic aglycone bearing two aliphatic side chains attached at C3 and C7, and disaccharide and trisaccharide units attached at positions 2 and 6, respectively. The mithramycin gene cluster has been characterized. This has allowed for the development of several mithramycin analogs (“mithralogs”) by combinatorial biosynthesis and/or biocatalysis. The combinatorial biosynthesis strategies include gene inactivation and/or the use of sugar biosynthesis plasmids for sugar modification. In addition, lipase-based biocatalysis enabled selective modifications of the hydroxyl groups, providing further mithramycin analogs. As a result, new mithramycin analogs with higher antitumor activity and/or less toxicity have been generated. One, demycarosyl-3D-β-D-digitoxosyl-mithramycin SK (EC-8042), is being tested in regulatory preclinical assays, representing an opportunity to open the therapeutic window of this promising molecular scaffold.

 
  • References

  • 1 González-Sabín J, Morís F. Exploring novel opportunities for aureolic acids as anticancer drugs. Biochem & Pharmacol 2013; 2: e140
  • 2 Grohar PJ, Woldemichael GM, Griffin LB, Mendoza A, Chen QR, Yeung C, Currier DG, Davis S, Khanna C, Khan J, McMahon JB, Helman LJ. Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening. J Natl Cancer Inst 2011; 103: 962-978
  • 3 Zhang M, Mathur A, Zhang Y, Xi S, Atay S, Hong JA, Datrice N, Upham T, Kemp CD, Ripley RT, Wiegand G, Avital I, Fetsch P, Mani H, Zlott D, Robey R, Bates SE, Li X, Rao M, Schrump DS. Mithramycin represses basal and cigarette smoke-induced expression of ABCG2 and inhibits stem cell signaling in lung and esophageal cancer cells. Cancer Res 2012; 72: 4178-4192
  • 4 Boichuk S, Lee DJ, Mehalek KR, Makielski KR, Wozniak A, Seneviratne DS, Korzeniewski N, Cuevas R, Parry JA, Brown MF, Zewe J, Taguchi T, Kuan SF, Schöffski P, Debiec-Rychter M, Duensing A. Unbiased compound screening identifies unexpected drug sensitivities and novel treatment options for gastrointestinal stromal tumors. Cancer Res 2014; 74: 1200-1213
  • 5 Vanner RJ, Remke M, Gallo M, Selvadurai HJ, Coutinho F, Lee L, Kushida M, Head R, Morrissy S, Zhu X, Aviv T, Voisin V, Clarke ID, Li Y, Mungall AJ, Moore RA, Ma Y, Jones SJ, Marra MA, Malkin D, Northcott PA, Kool M, Pfister SM, Bader G, Hochedlinger K, Korshunov A, Taylor MD, Dirks PB. Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell 2014; 26: 33-47
  • 6 Smolewski P. Terameprocol, a novel site-specific transcription inhibitor with anticancer activity. IDrugs 2008; 11: 204-214
  • 7 Núñez LE, Nybo SE, Gonzalez-Sabin J, Pérez M, Menéndez N, Braña AF, He M, Morís F, Salas JA, Rohr J, Méndez C. A novel mithramycin analogue with high antitumor activity and less toxicity generated by combinatorial biosynthesis. J Med Chem 2012; 55: 5813-5825
  • 8 Lombó F, Menéndez N, Salas JA, Méndez C. The aureolic acid family of antitumor compounds: structure, mode of action, biosynthesis and novel derivatives. Appl Microbiol Biotechnol 2006; 73: 1-14
  • 9 Lombó F, Braña AF, Méndez C, Salas JA. The mithramycin gene cluster of Streptomyces argillaceus contains a positive regulatory gene and two repeated DNA sequences that are located at both ends of the cluster. J Bacteriol 1999; 181: 642-647
  • 10 Blanco G, Fu H, Méndez C, Khosla C, Salas JA. Deciphering the biosynthetic origin of the aglycone of the aureolic acid group of anti-tumor agents. Chem Biol 1996; 3: 193-196
  • 11 Lombó F, Blanco G, Fernández E, Méndez C, Salas JA. Characterization of Streptomyces argillaceus genes encoding a polyketide synthase involved in the biosynthesis of the antitumor mithramycin. Gene 1996; 172: 87-91
  • 12 Prado L, Lombó F, Braña AF, Méndez C, Rohr J, Salas JA. Analysis of two chromosomal regions adjacent to a type II polyketide synthase involved in the biosynthesis of the antitumor polyketide mithramycin in Streptomyces argillaceus . Mol Gen Genet 1999; 261: 216-225
  • 13 Abdelfattah MS, Rohr J. Premithramycinone G, an early shunt product of the mithramycin biosynthetic pathway accumulated upon inactivation of oxygenase MtmOII. Angew Chem Int Ed Engl 2006; 45: 5685-5689
  • 14 Lozano MJ, Remsing LL, Quirós LM, Braña AF, Fernández E, Sánchez C, Méndez C, Rohr J, Salas JA. Characterisation of two polyketide methyltransferases involved in the biosynthesis of the antitumor drug mithramycin by Streptomyces argillaceus . J Biol Chem 2000; 275: 3065-3074
  • 15 Blanco G, Fernández E, Fernández MJ, Braña AF, Weißbach U, Künzel E, Rohr J, Méndez C, Salas JA. Characterization of two glycosyltransferases involved in early glycosylation steps during biosynthesis of the antitumor polyketide mithramycin by Streptomyces argillaceus . Mol Gen Genet 2000; 262: 991-1000
  • 16 Wang G, Pahari P, Kharel MK, Chen J, Zhu H, Van Lanen SG, Rohr J. Cooperation of two bifunctional enzymes in the biosynthesis and attachment of deoxysugars of the antitumor antibiotic mithramycin. Angew Chem Int Ed Engl 2012; 51: 10638-10642
  • 17 Rodríguez D, Quirós LM, Salas JA. MtmMII-mediated C-methylation during biosynthesis of the antitumor drug mithramycin is essential for biological activity and DNA-drug interaction. J Biol Chem 2004; 279: 8149-8158
  • 18 Fernández E, Weibbach U, Sánchez Reillo C, Braña AF, Méndez C, Rohr J, Salas JA. Identification of two genes from Streptomyces argillaceus encoding two glycosyltransferases involved in the transfer of a disaccharide during the biosynthesis of the antitumor drug mithramycin. J Bacteriol 1998; 180: 4929-4937
  • 19 Nur-e-Alam M, Méndez C, Salas JA, Rohr J. Elucidation of the glycosylation sequence of mithramycin biosynthesis: isolation of 3 A-deolivosylpremithramycin B and its conversion to premithramycin B by glycosyltransferase MtmGII. Chembiochem 2005; 6: 632-636
  • 20 Prado L, Fernández E, Weisbach U, Blanco G, Quirós LM, Braña AF, Méndez C, Rohr J, Salas JA. Oxidative cleavage of premithramycin B is one of the last steps in the biosynthesis of the antitumor drug mithramycin. Chem Biol 1999; 6: 19-30
  • 21 Rodríguez D, Quirós LM, Braña AF, Salas JA. Purification and characterization of a monooxygenase involved in the biosynthetic pathway of the antitumor drug mithramycin. J Bacteriol 2003; 185: 3962-3965
  • 22 Gibson M, Nur-e-alam M, Lipata F, Oliveira MA, Rohr J. Characterization of kinetics and products of the Baeyer-Villiger oxygenase MtmOIV, the key enzyme of the biosynthetic pathway toward the natural product anticancer drug mithramycin from Streptomyces argillaceus . J Am Chem Soc 2005; 127: 17594-17595
  • 23 Remsing LL, González AM, Nur-e-Alam M, Fernández-Lozano MJ, Braña AF, Rix U, Oliveira MA, Méndez C, Salas JA, Rohr J. Mithramycin SK, a novel antitumor drug with improved therapeutic index, mithramycin SA, and demycarosyl-mithramycin SK: three new products generated in the mithramycin producer Streptomyces argillaceus through combinatorial biosynthesis. J Am Chem Soc 2003; 125: 5745-5753
  • 24 Fernández E, Lombó F, Méndez C, Salas JA. An ABC transporter is essential for resistance to the antitumor agent mithramycin in the producer Streptomyces argillaceus . Mol Gen Genet 1996; 251: 692-698
  • 25 Salas JA, Méndez C. Genetic manipulation of antitumor-agents biosynthesis: a potential method for developing novel drugs. Trends Biotechnol 1998; 16: 475-482
  • 26 González A, Lombó F, Fernández Lozano MJ, Prado L, Braña AF, Rohr J, Méndez C, Salas JA. The mtmCUV genes of the antitumor mithramycin gene cluster are involved in the biosynthesis of the sugar moieties. Mol Gen Genet 2001; 264: 827-835
  • 27 Remsing LL, García-Bernardo J, González A, Künzel E, Rix U, Braña AF, Bearden DW, Méndez C, Salas JA, Rohr J. Ketopremithramycins and ketomithramycins, four new aureolic acid-type compounds obtained upon inactivation of two genes involved in the biosynthesis of the deoxysugar moieties of the antitumor drug mithramycin by Streptomyces argillaceus, reveal novel insights into post-PKS tailoring steps of the mithramycin biosynthetic pathway. J Am Chem Soc 2002; 124: 1606-1614
  • 28 Albertini V, Jain A, Vignati S, Napoli S, Rinaldi A, Kwee I, Nur-e-Alam M, Bergant J, Bertoni F, Carbone GM, Rohr J, Catapano CV. Novel GC-rich DNA-binding compound produced by a genetically engineered mutant of the mithramycin producer Streptomyces argillaceus exhibits improved transcriptional repressor activity: implications for cancer therapy. Nucleic Acids Res 2006; 34: 1721-1734
  • 29 Kunnari T, Klika KD, Blanco G, Méndez C, Mantsala P, Hakala J, Sillanpaa R, Tahtinen P, Salas JA, Ylihonko K. Hybrid compounds generated by the introduction of a nogalamycin-producing plasmid into Streptomyces argillaceus . J Chem Soc Perkin Trans I 2002; 1818-1825
  • 30 Lombó F, Künzel E, Prado L, Braña AF, Bindseil KU, Frevert J, Bearden D, Méndez C, Salas JA, Rohr J. The novel hybrid antitumor compound premithramycinone H provides indirect evidence for a tricyclic intermediate of the biosynthesis of the aureolic acid antibiotic mithramycin. Angew Chem Int Ed Engl 2000; 112: 808-811
  • 31 Wang G, Kharel MK, Pahari P, Rohr J. Investigating mithramycin deoxysugar biosynthesis: enzymatic total synthesis of TDP-D-olivose. Chembiochem 2011; 12: 2568-2571
  • 32 Künzel E, Faust B, Oelkers C, Weissbach U, Bearden DW, Weitnauer G, Westrich L, Bechthold A, Rohr J. Inactivation of the urdGT2 gene, which encodes a glycosyltransferase responsible for the C-glycosyltransfer of activated D-olivose, leads to formation of the novel urdamycins I, J, and K. J Am Chem Soc 1999; 121: 11058-11062
  • 33 Trefzer A, Blanco G, Remsing L, Künzel E, Rix U, Lipata F, Braña AF, Méndez C, Rohr J, Bechthold A, Salas JA. Rationally designed glycosylated premithramycins: hybrid aromatic polyketides using genes from three different biosynthetic pathways. J Am Chem Soc 2002; 124: 6056-6062
  • 34 Trefzer A, Fischer C, Stockert S, Westrich L, Künzel E, Girreser U, Rohr J, Bechthold A. Elucidation of the function of two glycosyltransferase genes (lanGT1 and lanGT4) involved in landomycin biosynthesis and generation of new oligosaccharide antibiotics. Chem Biol 2001; 8: 1239-1252
  • 35 Rodríguez L, Aguirrezabalaga I, Allende N, Braña AF, Méndez C, Salas JA. Engineering deoxysugar biosynthetic pathways from antibiotic-producing microorganisms: a tool to produce novel glycosylated bioactive compounds. Chem Biol 2002; 9: 721-729
  • 36 Lombó F, Gibson M, Greenwell L, Braña AF, Rohr J, Salas JA, Méndez C. Engineering biosynthetic pathway for deoxysugars: branched-chain sugar pathways and novel derivatives from the antitumor tetracenomycin. Chem Biol 2004; 11: 1709-1718
  • 37 Pérez M, Lombó F, Zhu L, Gibson M, Braña AF, Rohr J, Salas JA, Méndez C. Combining sugar biosynthesis gene cassettes to generate two glycosylated antitumor tetracenomycins. Chem Commun (Camb) 2005; 12: 1604-1606
  • 38 Pérez M, Lombó F, Baig I, Braña AF, Rohr J, Salas JA, Méndez C. Combining sugar biosynthesis genes for the generation of L- and D-amicetose and formation of two novel antitumor tetracenomycins. Appl Environ Microbiol 2006; 72: 6644-6652
  • 39 Baig I, Perez M, Braña AF, Gomathinayagam R, Damodaran C, Salas JA, Méndez C, Rohr J. Mithramycin analogs generated by combinatorial biosynthesis show improved bioactivity. J Nat Prod 2008; 71: 199-207
  • 40 Pérez M, Baig I, Braña AF, Salas JA, Rohr J, Méndez C. Generation of new derivatives of the antitumor antibiotic mithramycin by altering the glycosylation pattern through combinatorial biosynthesis. Chembiochem 2008; 9: 2295-2304
  • 41 Menéndez N, Mohammad N, Braña AF, Rohr J, Salas JA, Méndez C. Biosynthesis of the antitumor chromomycin A3 in Streptomyces griseus: analysis of the gene cluster and rational design of novel chromomycin analogues. Chem Biol 2004; 11: 21-32
  • 42 Menéndez N, Nur-e-Alam M, Braña AF, Rohr J, Salas JA, Méndez C. Tailoring modification of deoxysugars during biosynthesis of the antitumor drug chromomycin A3 by Streptomyces griseus subsp. griseus . Mol Microbiol 2004; 53: 903-915
  • 43 Menéndez N, Nur-e-Alam M, Fischer C, Braña AF, Salas JA, Rohr J, Méndez C. Deoxysugar transfer during chromomycin A3 biosynthesis in Streptomyces griseus subsp. griseus: new derivatives with antitumor activity. Appl Environ Microbiol 2006; 72: 67-77
  • 44 García B, González-Sabín J, Menéndez N, Braña AF, Núñez LE, Morís F, Salas JA, Méndez C. The chromomycin CmmA acetyltransferase: a membrane-bound enzyme as a tool for increasing structural diversity of the antitumour mithramycin. Microb Biotechnol 2011; 4: 226-238
  • 45 González-Sabín J, Morán-Ramallal R, Rebolledo F. Regioselective enzymatic acylation of complex natural products: expanding molecular diversity. Chem Soc Rev 2011; 40: 5321-5335
  • 46 González-Sabín J, Núñez LE, Braña AF, Méndez C, Salas JA, Gotor V, Morís F. Regioselective enzymatic acylation of aureolic acids to obtain novel analogues with improved antitumor activity. Adv Synth Catal 2012; 354: 1500-1508
  • 47 Tevyashova AN, Zbarsky EN, Balzarini J, Shtil AA, Dezhenkova LG, Bukhman VM, Zbarsky VB, Preobrazhenskaya MN. Modification of the antibiotic olivomycin I at the 2′-keto group of the side chain. Novel derivatives, antitumor and topoisomerase I-poisoning activity. J Antibiot (Tokyo) 2009; 62: 37-41
  • 48 Tevyashova AN, Olsufyeva EN, Turchin KF, Balzarini J, Bykov EE, Dezhenkova LG, Shtil AA, Preobrazhenskaya MN. Reaction of the antitumor antibiotic olivomycin I with aryl diazonium salts. Synthesis, cytotoxic and antiretroviral potency of 5-aryldiazenyl-6-O-deglycosyl derivatives of olivomycin I. Bioorg Med Chem 2009; 17: 4961-4967
  • 49 Tevyashova AN, Shtil AA, Olsufyeva EN, Luzikov YN, Reznikova MI, Dezhenkova LG, Isakova EB, Bukhman VM, Durandin NA, Vinogradov AM, Kuzmin VA, Preobrazhenskaya MN. Modification of olivomycin A at the side chain of the aglycon yields the derivative with perspective antitumor characteristics. Bioorg Med Chem 2011; 19: 7387-7393
  • 50 Scott D, Chen JM, Bae Y, Rohr J. Semi-synthetic mithramycin SA derivatives with improved anticancer activity. Chem Biol Drug Des 2013; 81: 615-624
  • 51 Remsing LL, Bahadori HR, Carbone GM, McGuffie EM, Catapano CV, Rohr J. Inhibition of c-src transcription by mithramycin: structure-activity relationships of biosynthetically produced mithramycin analogues using the c-src promoter as target. Biochemistry 2003; 42: 8313-8324
  • 52 Bataller M, Méndez C, Salas JA, Portugal J. Mithramycin SK modulates polyploidy and cell death in colon carcinoma cells. Mol Cancer Ther 2008; 7: 2988-2997
  • 53 Bataller M, Méndez C, Salas JA, Portugal J. Cellular response and activation of apoptosis by mithramycin SK in p 21(WAF1)-deficient HCT116 human colon carcinoma cells. Cancer Lett 2010; 292: 80-90
  • 54 Barceló F, Scotta C, Ortiz-Lombardía M, Méndez C, Salas JA, Portugal J. Entropically-driven binding of mithramycin in the minor groove of C/G-rich DNA sequences. Nucleic Acids Res 2007; 35: 2215-2226
  • 55 Barceló F, Ortiz-Lombardía M, Martorell M, Oliver M, Méndez C, Salas JA, Portugal J. DNA binding characteristics of mithramycin and chromomycin analogues obtained by combinatorial biosynthesis. Biochemistry 2010; 49: 10543-10552
  • 56 Mansilla S, Garcia-Ferrer I, Méndez C, Salas JA, Portugal J. Differential inhibition of restriction enzyme cleavage by chromophore-modified analogues of the antitumour antibiotics mithramycin and chromomycin reveals structure-activity relationships. Biochem Pharmacol 2010; 79: 1418-1427
  • 57 Previdi S, Malek A, Albertini V, Riva C, Capella C, Broggini M, Carbone GM, Rohr J, Catapano CV. Inhibition of Sp1-dependent transcription and antitumor activity of the new aureolic acid analogues mithramycin SDK and SK in human ovarian cancer xenografts. Gynecol Oncol 2010; 118: 182-188
  • 58 Malek A, Núñez LE, Magistri M, Brambilla L, Jovic S, Carbone GM, Morís F, Catapano CV. Modulation of the activity of Sp transcription factors by mithramycin analogues as a new strategy for treatment of metastatic prostate cancer. PLoS One 2012; 7: e35130
  • 59 Roth J, Peer CJ, Widemann B, Cole DE, Ershler R, Helman L, Schrump D, Figg WD. Quantitative determination of mithramycin in human plasma by a novel, sensitive ultra-HPLC-MS/MS method for clinical pharmacokinetic application. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 970: 95-101
  • 60 Vizcaíno C, Mansilla S, Núñez LE, Méndez C, Salas JA, Morís F, Portugal J. Novel mithramycins abrogate the involvement of protein factors in the transcription of cell cycle control genes. Biochem Pharmacol 2012; 84: 1133-1142
  • 61 Grohar PJ, Helman LJ. Prospects and challenges for the development of new therapies for Ewing sarcoma. Pharmacol Ther 2013; 137: 216-224
  • 62 Fernández-Guizán A, Mansilla S, Barceló F, Vizcaíno C, Núñez LE, Morís F, González S, Portugal J. The activity of a novel mithramycin analog is related to its binding to DNA, cellular accumulation, and inhibition of Sp1-driven gene transcription. Chem Biol Interact 2014; 219: 123-132
  • 63 Vizcaíno C, Núñez LE, Morís F, Portugal J. Genome-wide modulation of gene transcription in ovarian carcinoma cells by a new mithramycin analogue. PLoS One 2014; 9: e104687