Planta Med 2016; 82(03): 211-216
DOI: 10.1055/s-0035-1558165
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Ocimum gratissimum Essential Oil and Its Isolated Compounds (Eugenol and Myrcene) Reduce Neuropathic Pain in Mice

Lyvia Izaura Gomes Paula-Freire
1   Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
,
Graziella Rigueira Molska
2   Departamento de Medicina Preventiva, Universidade Federal de São Paulo, São Paulo, Brazil
,
Monica Levy Andersen
1   Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
,
Elisaldo Luiz de Araújo Carlini
2   Departamento de Medicina Preventiva, Universidade Federal de São Paulo, São Paulo, Brazil
› Author Affiliations
Further Information

Publication History

received 20 May 2015
revised 23 September 2015

accepted 25 September 2015

Publication Date:
19 November 2015 (online)

Abstract

Ocimum gratissimum is used in popular medicine to treat painful diseases. The antihypernociceptive properties of O. gratissimum essential oil and two of its active components (eugenol and myrcene) were tested in a model of neuropathic pain induced by a chronic constriction injury of the sciatic nerve. In tests to determine chronic antinociception, adult male C57BL/6 J mice were treated orally with corn oil (control group), O. gratissimum essential oil at doses of 10, 20, or 40 mg/kg or eugenol or myrcene at doses of 1, 5, or 10 mg/kg for 14 days after surgery. Pregabalin (20 mg/kg) was used as a standard in this study. The treatment with 20 and 40 mg/kg of O. gratissimum essential oil and at doses of 5 and 10 mg/kg of the active components were able to promote antihypernociception in both mechanical (von Frey) and thermal (hot plate) tests. The treatment with the essential oil of the plant or eugenol was effective in reducing the levels of interleukin-1β in the sciatic nerve. Our findings demonstrate that O. gratissimum essential oil and its isolated active components possess antihypernociceptive activity in neuropathic pain models.

 
  • References

  • 1 Millan MJ. The induction of pain: an integrative review. Prog Neurobiol 1999; 57: 1-164
  • 2 Melzack R, Wall PD. Pain mechanisms: a new theory. Science 1965; 699: 971-979
  • 3 Richeimer SH, Bajwa ZH, Kachramann SS, Ransil BJ, Warfield CA. Utilization patterns of tricyclic antidepressants in a multidisciplinary pain clinic: a survey. Clin J Pain 1997; 13: 324-329
  • 4 Finnerup NB, Otto M, McQuay HJ, Jensen TS, Sindrup SH. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain 2005; 218: 289-305
  • 5 Calixto JB, Beirith A, Ferreira J, Santos ARS, Cechinel VF, Yunes RA. Naturally occurring antinociceptive substances from plants. Phytother Res 2000; 14: 1-18
  • 6 Almeida ERD. Plantas medicinais brasileiras – conhecimentos populares e científicos. São Paulo: Hemus; 1993
  • 7 Lorenzi H, Matos FJA. Plantas medicinais no Brasil – nativas e exóticas. São Paulo: Instituto Plantarum de Estudos da Flora LTDA; 2008
  • 8 Okiemy-Anissa N, Miguel ML, Etou AW, Ouamba JM, Gbeassor M, Abena AA. Analgesic effect of aqueous and hydroalcoholic extracts of three Congolese medicinal plants: Hyptis suavolens, Nauclea latifolia and Ocimum gratissimum . Pak J Biol Sci 2004; 7: 1613-1615
  • 9 Tanko Y, Magaji GM, Yerima M, Magaji RA, Mohammed A. Antinociceptive and anti-inflammatory activities of aqueous leaves extract of Ocimum gratissimum (Labiate) in rodents. Afr J Tradit Complement Altern Med 2008; 5: 141-146
  • 10 Rabelo M, Souza EP, Soares PMG, Miranda AV, Matos FJA, Criddle DN. Antinociceptive properties of the essential oil of Ocimum gratissimum L. (Labiatae) in mice. Braz J Med Biol Res 2003; 36: 521-524
  • 11 Paula-Freire LIG, Andersen ML, Molska GR, Köhn DO, Carlini ELA. Evaluation of the antinociceptive activity of Ocimum gratissimum L. essential oil and its isolated active principles in mice. Phytother Res 2013; 27: 1220-1224
  • 12 Trevisan MTS, Silva MGV, Pfundstein B, Spiegelhalder B, Owen RW. Characterization of the volatile pattern and antioxidant capacity of essential oils from different species of the genus Ocimum . J Agric Food Chem 2006; 54: 4377-4382
  • 13 Sell AB, Carlini EA. Anesthetic action of methyleugenol and other eugenol derivatives. Pharmacology 1976; 14: 367-377
  • 14 Freire CMM, Marques MOM, Costa M. Effects of seasonal variation on the central nervous system activity of Ocimum gratissimum L. essential oil. J Ethnopharmacol 2006; 105: 161-166
  • 15 Galindo LA, Pultrini Ade M, Costa M. Biological effects of Ocimum gratissimum L. are due to synergic action among multiple compounds present in essential oil. J Nat Med 2010; 64: 436-441
  • 16 Dworkin RH, Backonja M, Rowbotham MC, Allen RR, Argoff CR, Bennett GJ, Bushnell MC, Farrar JT, Galer BS, Haythornthwaite JA, Hewitt DJ, Loeser JD, Max M, Saltarelli M, Schmader KE, Stein C, Thompson D, Turk DC, Wallace MS, Watkins LR, Weinstein SM. Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol 2003; 60: 1524-1534
  • 17 Muthuraman A, Diwan V, Jaggi AS, Singh N, Singh D. Ameliorative effects of Ocimum sanctum in sciatic nerve transection-induced neuropathy in rats. J Ethnopharmacol 2008; 120: 56-62
  • 18 Anandjiwala S, Kalola J, Rajani M. Quantification of eugenol, luteolin, ursolic acid, and oleanolic acid in black (Krishna Tulasi) and green (Sri Tulasi) varieties of Ocimum sanctum Linn. using high-performance thin-layer chromatography. J AOAC Int 2006; 89: 1467-1474
  • 19 Hakkim FL, Shankar CG, Girija S. Chemical composition and antioxidant property of holy basil (Ocimum sanctum L.) leaves, stems, and inflorescence and their in vitro callus cultures. J Agric Food Chem 2007; 55: 9109-9117
  • 20 Kumar A, Shukla R, Singh P, Dubey NK. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food Chem Toxicol 2010; 48: 539-543
  • 21 Padalia RC, Verma RS. Comparative volatile oil composition of four Ocimum species from northern India. Nat Prod Res 2011; 25: 569-575
  • 22 Guenette SA, Ross A, Marier JF, Beaudry F, Vachon P. Pharmacokinetics of eugenol and its effects on thermal hypersensitivity in rats. Eur J Pharmacol 2007; 562: 60-67
  • 23 Park SH, Sim YB, Lee JK, Kim SM, Kang YJ, Jung JS, Suh HW. The analgesic effects and mechanisms of orally administered eugenol. Arch Pharm Res 2011; 34: 501-507
  • 24 Kauar G, Bali A, Singh N, Jaggi AN. Ameliorative potential of Ocimum sanctum in chronic constriction injury-induced neuropathic pain in rats. An Acad Bras Cienc 2015; 87: 417-429
  • 25 Ueda H. Molecular mechanisms of neuropathic pain-phenotypic switch and initiation mechanisms. Pharmacol Ther 2006; 109: 57-77
  • 26 Klusáková I, Dubový P. Experimental models of peripheral neuropathic pain based on traumatic nerve injuries – an anatomical perspective. Ann Anat 2009; 191: 248-259
  • 27 Setty AR, Sigal LH. Herbal medications commonly used in the practice of rheumatology: mechanisms of action, efficacy, and side effects. Semin Arthritis Rheum 2005; 34: 773-784
  • 28 Kapewangolo P, Omolo JJ, Bruwer R, Fonteh P, Meyer D. Antioxidant and anti-inflammatory activity of Ocimum labiatum extract and isolated labdane diterpenoid. J Inflamm 2015; 12: 1-13
  • 29 Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997; 389: 816-824
  • 30 Yang BH, Piao ZG, Kim YB, Lee CH, Lee JK, Park K, Kim JS, Oh SB. Activation of vanilloid receptor 1 (VR1) by eugenol. J Dent Res 2003; 82: 781-785
  • 31 Aoshima H, Hamamoto K. Potentiation of GABAA receptors expressed in Xenopus oocytes by perfume and phytoncid. Biosci Biotechnol Biochem 1999; 63: 743-748
  • 32 Moreira-Lobo DC, Linhares-Siqueira ED, Cruz GM, Cruz JS, Carvalho-de-Souza JL, Lahlou S, Coelho-de-Souza AN, Barbosa R, Magalhães PJ, Leal-Cardoso JH. Eugenol modifies the excitability of rat sciatic nerve and superior cervical ganglion neurons. Neurosci Lett 2010; 472: 220-224
  • 33 Brodin P. Differential inhibition of A, B and C fibres in the rat vagus nerve by lidocaine, eugenol and formaldehyde. Arch Oral Biol 1985; 30: 477-480
  • 34 Rao VS, Menezes AM, Viana GS. Effect of myrcene on nociception in mice. J Pharm Pharmacol 1990; 42: 877-878
  • 35 Amin B, Hajhashemi V, Hosseinzadeh H, Abnous KH. Antinociceptive evaluation of ceftriaxone and minocycline alone and in combination in a neuropathic pain model in rat. Neuroscience 2012; 224: 15-25
  • 36 Wang W, Mei XP, Chen L, Tang J, Li JL, Wu SX, Xu LX, Li YQ. Triptolide prevents and attenuates neuropathic pain via inhibiting central immune response. Pain Physician 2012; 15: 995-1006
  • 37 Lopez-Castejon G, Brough D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev 2011; 22: 189-195
  • 38 del Rey A, Yau HJ, Randolf A, Centeno MV, Wildmann J, Martina M, Besedovsky HO, Apkarian AV. Chronic neuropathic pain-like behavior correlates with IL-1β expression and disrupts cytokine interactions in the hippocampus. Pain 2011; 152: 2827-2835
  • 39 Kiguchi N, Kobayashi Y, Kishioka S. Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol 2012; 12: 55-61
  • 40 Hashizume H, DeLeo JA, Colburn RW, Weinstein JN. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine (Phila Pa 1976) 2000; 25: 1206-1217
  • 41 Mogil JS, Ritchie J, Sotocinal SG, Smith SB, Croteau S, Levitin DJ, Naumova AK. Screening for pain phenotypes: analysis of three congenic mouse strains on a battery of nine nociceptive assays. Pain 2006; 126: 24-34
  • 42 Balter RE, Dykstra LA. Thermal sensitivity as a measure of spontaneous morphine withdrawal in mice. J Pharmacol Toxicol Methods 2013; 67: 162-168
  • 43 Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988; 33: 87-107
  • 44 Martucci C, Trovato AE, Costa B, Borsani E, Franchi S, Magnaghi V, Panerai AE, Rodella LF, Valsecchi AE, Sacerdote P, Colleoni M. The purinergic antagonist PPADS reduces pain related behaviours and interleukin-1 beta, interleukin-6, iNOS and nNOS overproduction in central and peripheral nervous system after peripheral neuropathy in mice. Pain 2008; 137: 81-95
  • 45 Cunha TM, Verri jr. WA, Vivancos GG, Moreira IF, Reis S, Parada CA, Cunha FQ, Ferreira SH. An electronic pressure-meter nociception paw test for mice. Braz J Med Biol Res 2004; 37: 401-407
  • 46 Hargraves WA, Hentall ID. Analgesic effects of dietary caloric restriction in adult mice. Pain 2005; 114: 455-461