Planta Med 2016; 82(04): 322-329
DOI: 10.1055/s-0035-1558294
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Beneficial Effects of a Flavonoid Fraction of Herba Epimedii on Bone Metabolism in Ovariectomized Rats

Bing-jie Zhao*
1   Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, P. R. China
,
Jing Wang*
2   Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, P. R. China
,
Jie Song
2   Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, P. R. China
,
Chun-fei Wang
2   Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, P. R. China
,
Jun-fei Gu
2   Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, P. R. China
,
Jia-rui Yuan
2   Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, P. R. China
,
Li Zhang
2   Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, P. R. China
,
Jun Jiang
2   Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, P. R. China
,
Liang Feng
2   Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, P. R. China
,
Xiao-bin Jia
2   Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, P. R. China
› Author Affiliations
Further Information

Publication History

received 04 June 2015
revised 06 September 2015

accepted 20 October 2015

Publication Date:
29 January 2016 (online)

Abstract

A flavonoid fraction of Herba Epimedii, including eight flavonoid glycoside compounds, epimedoside A, ikarisoside F, baohuoside II, sagittatoside A, sagittatoside B, 7-O-rhamnosyl icariside II, 2″-O-rhamnosyl icariside II, and baohuoside I, was isolated and prepared from the leaves of Herba Epimedii. This study was conducted to assess the potential effect of the flavonoid fraction of Herba Epimedii on osteoporosis in ovariectomized rats. Rats received repeated administration of a vehicle (ovariectomized), the flavonoid fraction of Herba Epimedii (7.5, 15, 30 mg/kg/d), and ipriflavone (200 mg/kg/d) once a day for 8 weeks, beginning 4 weeks after ovariectomization. Then, the bone turnover markers, bone biomechanical properties, trabecular architecture, and related protein expressions were evaluated by biochemical assay kits, mechanical testing, microcomputed tomography, immunohistochemical evaluation, and Western blot analysis. Treatment with the flavonoid fraction of Herba Epimedii (15, 30 mg/kg/d) and ipriflavone (200 mg/kg/d) significantly increased bone strength while dramatically inhibiting the serum alkaline phosphatase and tartrate-resistant acid phosphatase levels in ovariectomized rats. Furthermore, the flavonoid fraction of Herba Epimedii also increased osteoprotegerin protein expression and reduced the receptor activator of nuclear factor-κB ligand protein expression compared with ovariectomized rats. In addition, the microcomputed tomography results showed that the flavonoid fraction of Herba Epimedii treatment significantly improved trabecular bone mineral density and restored the bone microarchitecture in ovariectomized rats. Therefore, our results indicated that the flavonoid fraction of Herba Epimedii might be beneficial for improving postmenopausal osteoporosis and should be considered as a promising candidate for treating postmenopausal osteoporosis.

* Bing-jie Zhao and Jing Wang contributed equally to this work.


 
  • References

  • 1 Sambrook P, Cooper C. Osteoporosis. Lancet 2006; 367: 2010-2018
  • 2 Khosla S, Westendorf JJ, Oursler MJ. Building bone to reverse osteoporosis and repair fractures. J Clin Invest 2008; 118: 421-428
  • 3 Li XF, Xu H, Zhao YJ, Tang DZ, Xu GH, Holz J, Wang J, Cheng SD, Shi Q, Wang YJ. Icariin augments bone formation and reverses the phenotypes of osteoprotegerin-deficient mice through the activation of Wnt/β-catenin-BMP signaling. Evid Based Complement Alternat Med 2013; 2013: 652317
  • 4 Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J. Writing group for the Womenʼs Health Initiative investigators. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Womenʼs Health Initiative randomized controlled trial. JAMA 2002; 288: 321-333
  • 5 Beral V. Million Women Study Collaborators. Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 2003; 362: 419-427
  • 6 Gambacciani M, Ciaponi M, Genazzani AR. The HRT misuse and osteoporosis epidemic: a possible future scenario. Climacteric 2007; 10: 273-275
  • 7 Komm BS. A new approach to menopausal therapy: the tissue selective estrogen complex. Reprod Sci 2008; 15: 984-992
  • 8 Stephen M, Darshan S, Sonia LP, John AA. Selective estrogen receptor modulators: tissue specificity and clinical utility. Clin Interv Aging 2014; 9: 1437-1452
  • 9 Jordan VC. Selective estrogen receptor modulation: concept and consequences in cancer. Cancer Cell 2004; 5: 207-213
  • 10 Pharmacopoeia Commission of PRC. Pharmacopoeia of the Peopleʼs Republic of China. Beijing: Chinese Medical Science and Technology Press; 2010: 306
  • 11 An SJ, Li T, Li E. Effect of kidney-tonifying herbs on ovary function and bone mass in postmenopausal women. Chin J Osteoporosis 2002; 6: 55-59
  • 12 Wang JS, Xu X, Jin JS, Chen GJ, Cao HY, Liu JF, Mao KC, Wang GC. Clinical study of treatment of female osteoporosis with Yishen Jiangu pills. Chin J Osteoporosis 1997; 3: 61-63
  • 13 Ye C, Su J, Wang F. Expression of TNF-α and TGF-β 1 in vertebrae of model rats of epimedium preventing ovariectomy-induced osteoporosis. Chin J Clin Anat 2006; 24: 687-690
  • 14 Xie F, Wu CF, Lai WP, Yang XJ, Cheung PY, Yao XS, Leung PC, Wong MS. The osteoprotective effect of Herba epimedii (HEP) extract in vivo and in vitro . Evid Based Complement Alternat Med 2005; 2: 353-361
  • 15 Chen BL, Xie DH, Wang ZW, Li FB, Xu DL, Li YQ. Effect of total flavone of Epimedium on expression of bone OPG, OPGL mRNA in ovariectomized rats. Zhongguo Gu Shang 2009; 22: 271-273
  • 16 Zhang G, Qin L, Shi Y. Epimedium-derived phytoestrogen flavonoids exert beneficial effect on preventing bone loss in late postmenopausal women: a 24-month randomized, double-blind and placebo-controlled trial. J Bone Miner Res 2007; 22: 1072-1079
  • 17 Jiang YN, Mo HY, Chen JM. Effects of Epimedium total flavonoids phytosomes on preventing and treating bone loss of ovariectomized rats. Zhongguo Zhong Yao Za Zhi 2002; 27: 221-224
  • 18 Kapoor S. Icariin and its emerging role in the treatment of osteoporosis. Chin Med J (Engl) 2013; 126: 400
  • 19 Ma HP, Ming LG, Ge BF, Zhai YK, Song P, Xian CJ, Chen KM. Icariin is more potent than genistein in promoting osteoblast differentiation and mineralization in vitro . J Cell Biochem 2011; 112: 916-923
  • 20 Zhang D, Zhang J, Fong C, Yao X, Yang M. Herba Epimedii flavonoids suppress osteoclastic differentiation and bone resorption by inducing G2/M arrest and apoptosis. Biochimie 2012; 94: 2514-2522
  • 21 Huang J, Yuan L, Wang X, Zhang TL, Wang K. Icaritin and its glycosides enhance osteoblastic, but suppress osteoclastic, differentiation and activity in vitro . Life Sci 2007; 81: 832-840
  • 22 Song L, Zhao J, Zhang X, Li H, Zhou Y. Icariin induces osteoblast proliferation, differentiation and mineralization through estrogen receptor-mediated ERK and JNK signal activation. Eur J Pharmacol 2013; 714: 15-22
  • 23 Wei H, Zili L, Yuanlu C, Biao Y, Cheng L, Xiaoxia W, Yang L, Xing W. Effect of icariin on bone formation during distraction osteogenesis in the rabbit mandible. Int J Oral Maxillofac Surg 2011; 40: 413-418
  • 24 Yang L, Yu Z, Qu H, Li M. Comparative effects of hispidulin, genistein, and icariin with estrogen on bone tissue in ovariectomized rats. Cell Biochem Biophys 2014; 70: 485-490
  • 25 Chen Y, Jia XB, Hu M. Absorption and transportation of flavonoids in Herb Epimedii across Caco-2 monolayer model. Chin Tradit Herb Drugs 2009; 40: 220-224
  • 26 Chen Y, Wang JY, Jia XB, Tan XB, Hu M. Role of intestinal hydrolase in the absorption of prenylated flavonoids present in Yin Yanghuo. Molecules 2011; 16: 1336-1348
  • 27 Alexandersen P, Toussaint A, Christiansen C, Devogelaer JP, Roux C, Fechtenbaum J, Gennari C, Reginster JY. Ipriflavone in the treatment of postmenopausal osteoporosis. JAMA 2001; 285: 1482-1488
  • 28 Gennari C, Agnusdei D, Crepaldi G, Isaia G, Mazzuoli G, Ortolani S, Bufalino L, Passeri M. Effect of ipriflavone – a synthetic derivative of natural isoflavones – on bone mass loss in the early years after menopause. Menopause 1998; 5: 9-15
  • 29 Adami S, Buffalino L, Cervetti R, Di Marco C, Di Munno O, Fantasia L, Isaia GC, Serni U, Vecchiet L, Passeri M. Ipriflavone prevents radial bone loss in postmenopausal with low bone mass over 2 years. Osteoporos Int 1997; 7: 119-125
  • 30 Gennari C, Adami S, Agnusdei D, Bufalíno L, Cervetti R, Crepaldi G, Di Marco C, Di Munno O, Fantasia L, Isaia GC, Mazzuoli GF, Ortolani S, Passeri M, Serni U, Vecchiet L. Effect of chronic treatment with ipriflavone in postmenopausal women with low bone mass. Calcif Tissue Int 1997; 61: S19-S22
  • 31 Ohta H, Komukai S, Makita K, Masuzawa T, Nozawa S. Effects of 1-year ipriflavone treatment on lumbar bone mineral density and bone metabolic markers in postmenopausal women with low bone mass. Horm Res 1999; 51: 178-183
  • 32 Agnusdei D, Zacchei F, Bigazzi S, Cepollaro C, Nardi P, Montagnani M, Gennari C. Metabolic and clinical effects of ipriflavone inestablished post-menopausal osteoporosis. Drugs Exp Clin Res 1989; 15: 97-104
  • 33 Agnusdei D, Bufalino L. Efficacy of ipriflavone in established osteoporosis and long-term safety. Calcif Tissue Int 1997; 61: 23-27
  • 34 Agnusdei D, Crepaldi G, Isaia G, Mazzuoli G, Ortolani S, Passeri M, Bufalino L, Gennari C. A double blind, placebo-controlled trial of ipriflavone for prevention of postmenopausal spinal bone loss. Calcif Tissue Int 1997; 61: 142-147
  • 35 Passeri M, Biondi M, Costi D, Bufalino L, Castiglione GN, Di Peppe C, Abate G. Effect of ipriflavone on bone mass in elderly osteoporotic women. Bone Miner 1992; 19: S57-S62
  • 36 Zhai YK, Guo X, Pan YL, Niu YB, Li CR, Wu XL, Mel QB. A systematic review of the efficacy and pharmacological profile of Herba Epimedii in osteoporosis therapy. Pharmazie 2013; 68: 713-722
  • 37 Jia DS, Jia XB, Zhao JL, Shi F, Jiang J, Huang Y. Preparation of baohuoside I by enzymolysis of icariin with cellulose. Chin Tradit Herb Drugs 2010; 41: 888-892
  • 38 Xu FJ, Sun E, Zhang ZH, Cui L, Jia XB. The research of preparation of sagittatoside B by enzymolysis of epimedin B with cellulose. Chin J Chin Mater Med 2014; 39: 235-238
  • 39 Jiang J, Li J, Jia XB. The antiosteoporotic activity of central-icaritin (CIT) on bone metabolism of ovariectomized rats. Molecules 2014; 19: 18690-18704
  • 40 Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA. The laboratory rat as an animal model for osteoporosis research. Comp Med 2008; 58: 424-430
  • 41 Shih CC, Wu YW, Lin WC. Ameliorative effects of Anoectochilus formosanus extract on osteopenia in ovariectomized rats. J Ethnopharmacol 2001; 77: 233-238
  • 42 Bohatyrewicz A. The effect of sodium fluoride on selected biochemicalmarkers of bone turnover in ovariectomized rats. Pol Merkur Lekarski 1998; 5: 192-194
  • 43 Zhang DW, Deng HL, Qi W, Zhao GY, Cao XR. Osteoprotective effect of cordycepin on estrogen deficiency-induced osteoporosis in vitro and in vivo. Biomed Res Int,. advance online publication 22.03.2015; DOI: 10.1155/2015/423869.
  • 44 Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 2008; 473: 139-146
  • 45 Liu XL, Lei W, Wu ZX, Cui Y, Han BJ, Fu SC, Jiang CL. Effects of glucocorticoid on BMD, micro-architecture and biomechanics of cancellous and cortical bone mass in OVX rabbits. Med Eng Phys 2012; 34: 2-8
  • 46 Fridoni M, Nejati H, Salimi M, Gharavi SM, Bayat M, Amini A, Torkman G, Bayat S. Evaluation of the effects of LLLT on biomechanical properties of tibial diaphysis in two rat models of experimental osteoporosis by a three point bending test. Lasers Med Sci 2015; 30: 1117-1125
  • 47 Jamsa T, Jalovaara P, Peng Z, Vaananen HK, Tuukkanen J. Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia. Bone 1998; 23: 155-161
  • 48 Bagi CM, Hanson N, Andresen C, Pero R, Lariviere R, Turner CH, Laib A. The use of micro-CT to evaluate cortical bone geometry and strength in nude rats: correlation with mechanical testing, pQCT and DXA. Bone 2006; 38: 136-144
  • 49 Mittra E, Rubin C, Gruber B, Qin YX. Evaluation of trabecular mechanical and microstructural properties in human calcaneal bone of advanced age using mechanical testing, µCT, and DXA. J Biomech 2008; 41: 368-375
  • 50 Wronski TJ, Lowry PL, Walsh CC, Ignaszewski LA. Skeletal alterations in ovariectomized rats. Calcif Tissue Int 1985; 37: 324-328
  • 51 Peng Z, Tuukkanen J, Zhang H, Jämsä T, Väänänen HK. The mechanical strength of bone in different rat models of experimental osteoporosis. Bone 1994; 15: 523-532
  • 52 El Khassawna T, Böcker W, Govindarajan P, Schliefke N, Hürter B, Kampschulte M, Schlewitz G, Alt V, Lips KS, Faulenbach M, Möllmann H, Zahner D, Dürselen L, Ignatius A, Bauer N, Wenisch S, Langheinrich AC, Schnettler R, Heiss C. Effects of multi-deficiencies-diet on bone parameters of peripheral bone in ovariectomized mature rat. PLoS One 2013; 8: e71665