Geburtshilfe Frauenheilkd 2015; 75(12): 1250-1257
DOI: 10.1055/s-0035-1558298
Original Article
GebFra Science
Georg Thieme Verlag KG Stuttgart · New York

Non-reproductive Effects of Anovulation

Bone Metabolism in the Luteal Phase of Premenopausal Women Differs between Ovulatory and Anovulatory CyclesNicht reproduktive Effekte der AnovulationUnterschiede zwischen ovulatorischen und anovulatorischen Zyklen im Knochenstoffwechsel von prämenopausalen Frauen
B. Niethammer
1   Gyn. Endokrinologie, Frauenklinik und Poliklinik der TU München, München
,
C. Körner
1   Gyn. Endokrinologie, Frauenklinik und Poliklinik der TU München, München
,
M. Schmidmayr
1   Gyn. Endokrinologie, Frauenklinik und Poliklinik der TU München, München
,
P. B. Luppa
2   Institut für klinische Chemie und Pathobiochemie der TU München, München
,
V. R. Seifert-Klauss
1   Gyn. Endokrinologie, Frauenklinik und Poliklinik der TU München, München
› Author Affiliations
Further Information

Publication History

received 10 July 2015
revised 22 September 2015

accepted 03 November 2015

Publication Date:
21 December 2015 (online)

Abstract

Introduction: Several authors have linked subclinical ovulatory disturbances in normal length menstrual cycles to premenopausal fracture risk and bone changes. This study systematically examined the influence of ovulation and anovulation on the bone metabolism of premenopausal women. Participants and Methods: In 176 cycles in healthy premenopausal women, FSH, 17β-estradiol (E2) and progesterone (P4) as well as bone alkalic phosphatase (BAP), pyridinoline (PYD) and C-terminal crosslinks (CTX) were measured during the follicular and during the luteal phase. The probability and timing of ovulation was self-assessed by a monitoring device. In addition, bone density of the lumbar spine was measured by quantitative computed tomography (QCT) at baseline and at the end of the study. Analysis was restricted to blood samples taken more than three days before the following menstruation. Results: 118 cycles out of the 176 collected cycles were complete with blood samples taken within the correct time interval. Of these, 56.8 % were ovulatory by two criteria (ovulation symbol shown on the monitor display and LP progesterone > 6 ng/ml), 33.1 % were possibly ovulatory by one criterion (ovulation symbol shown on the monitor display or LP progesterone > 6 ng/ml), and 10.2 % were anovulatory by both criteria). Ovulation in the previous cycle and in the same cycle did not significantly influence the mean absolute concentrations of the bone markers. However, bone formation (BAP) was higher in the luteal phase of ovulatory cycles than in anovulatory cycles (n. s.) and the relative changes within one cycle were significantly different for bone resorption (CTX) during ovulatory vs. anovulatory cycles (p < 0.01). In 68 pairs of cycles following each other directly, both ovulation in the previous cycle and ovulation in the present cycle influenced CTX, but not the differences of other bone markers. Conclusion: Ovulatory cycles reduce bone resorption in their luteal phase and that of the following cycle. The interaction between ovulation and bone metabolism is complex. Since anovulation may occur in low estrogen states such as pre-anorexic dietary restraint, as well as with high estrogenic circumstances e.g. from functional perimenopausal ovarian cysts, the association with bone changes has been variable in the literature. Accumulating physiological and clinical evidence however point towards a role for ovulation in enhancing bone formation and limiting bone resorption.

Zusammenfassung

Einleitung: Sowohl Knochenstoffwechselveränderungen wie auch ein erhöhtes Risiko für spätere Frakturen sind von verschiedenen Autoren mit subklinischen ovulatorischen Störungen (in menstruellen Zyklen normaler Länge) in Verbindung gebracht worden. Diese Pilotstudie untersuchte systematisch den Einfluss der Ovulation und Anovulation auf den Knochenstoffwechsel prämenopausaler Frauen. Studienteilnehmerinnen und Methodik: Bei gesunden prämenopausalen Frauen wurden in 176 Zyklen FSH, 17β-Estradiol (E2) und Progesteron (P4) sowie knochenalkalische Phosphatase (BAP), Pyridinolin (PYD) und C-terminale Crosslinks (CTX) jeweils während Follikelphase und Lutealphase gemessen. Die Ovulations-Wahrscheinlichkeit und der Zeitpunkt der Ovulation wurden mittels Zyklusmonitor bestimmt. Die Knochendichte der Lendenwirbelsäule wurde mit quantitativer Computertomografie (QCT) zu Beginn und am Ende der Studie gemessen. Analysiert wurden die Zyklen, in denen die Lutealphasen-Blutproben mehr als 3 Tage vor der nächsten Menstruation entnommen worden waren. Ergebnisse: In 118 von 176 gesammelten Zyklen waren die Blutproben im korrekten Zeitintervall. 56,8 % wurden auf der Basis von 2 Kriterien (Ovulationssymbol auf der Monitoranzeige und Progesteron > 6 ng/ml) als ovulatorisch gewertet, 33,1 % als möglicherweise ovulatorisch (nur Ovulationssymbol auf der Monitoranzeige oder LP Progesteron > 6 ng/ml) und 10,2 % als anovulatorisch (nach beiden Kriterien) klassifiziert. Die relativen Unterschiede innerhalb eines Zyklus (LP – FP) waren für den Knochenabbau-Marker CTX in ovulatorischen vs. anovulatorischen Zyklen signifikant vermindert (p < 0,01). In 68 Zykluspaaren, die direkt aufeinander folgten, beeinflussten sowohl die Ovulation im vorangegangenen als auch die Ovulation im aktuellen Zyklus signifikant den Knochenabbau-Parameter CTX, die intrazyklischen Unterschiede anderer Knochenmarker erreichten in dieser Pilotstudie keine Signifikanz. Diskussion: Die Interaktion zwischen Ovulation und Knochenstoffwechsel ist komplex. Ovulatorische Zyklen reduzieren den Knochenabbau in der Lutealphase des gleichen Zyklus und der des nachfolgenden Zyklus. Dadurch dass Anovulation mit niedrigen Estrogenspiegeln (z. B. prä-anorektische Ernährung) ebenso auftritt wie in Verbindung mit hohen Östrogenspiegeln (z. B. bei perimenopausalen Ovarialzysten), ist ihre Wirkung auf den Knochen in verschiedenen Kollektiven unterschiedlich beurteilt worden. Fazit: Die hier vorliegenden physiologischen und klinischen Daten sprechen dafür, dass die Ovulation beim Knochenaufbau und bei der Verminderung von Knochenabbau eine Rolle spielt.

 
  • References

  • 1 Li D, Hitchcock CL, Barr SI et al. Negative spinal bone mineral density changes and subclinical ovulatory disturbances – prospective data in healthy permenopausal women with regular menstrual cycles. Epidemiol Rev 2014; 36: 137-147
  • 2 Kalyan S, Prior JC. Bone changes and fracture related to menstrual cycles and ovulation. Crit Rev Eukaryot Gene Expr 2010; 20: 213-233
  • 3 Prior JC, Naess M, Langhammer A et al. The point prevalence of ovulation in a large population-based sample of spontaneously, regularly menstruating women. The HUNT study, Norway. Endocrine Reviews 2013; 34: 6573
  • 4 Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 2005; 26: 97-122
  • 5 Blumsohn A, Eastell R. The performance and utility of biochemical markers of bone turnover: do we know enough to use them in clinical practice?. Ann Clin Biochem 1997; 34 (Pt 5) 449-459
  • 6 Miller PD, Zapalowski C, Kulak CA et al. Bone densitometry: the best way to detect osteoporosis and to monitor therapy. J Clin Endocrinol Metab 1999; 84: 1867-1871
  • 7 Behre HM, Kuhlage J, Gassner C et al. Prediction of ovulation by urinary hormone measurements with the home use ClearPlan Fertility Monitor: comparison with transvaginal ultrasound scans and serum hormone measurements. Hum Reprod 2000; 15: 2478-2482
  • 8 McKinlay SM. The normal menopause transition: an overview. Maturitas 1996; 23: 137-145
  • 9 Skurnick JH, Weiss G, Goldsmith LT et al. Longitudinal changes in hypothalamic and ovarian function in perimenopausal women with anovulatory cycles: Relationship with vasomotor symptoms. Fertil Steril 2009; 91: 1127-1134
  • 10 Santoro N, Crawford SL, Lasley JL et al. Factors related to declining luteal function in women during the menopausal transition. J Clin Endocrinol Metab 2008; 93: 1711-1721
  • 11 Grewal J, Sowers MR, Randolph JF et al. Low bone mineral density in the early menopausal transition: role for ovulatory function. J Clin Endocrinol Metab 2006; 91: 3780-3785
  • 12 Nielsen HK, Brixen K, Bouillon R et al. Changes in biochemical markers of osteoblastic activity during the menstrual cycle. J Clin Endocrinol Metab 1990; 70: 1431-1437
  • 13 Shimizu M, Onoe Y, Mikumo M et al. Variations in circulating osteoprotegerin and soluble RANKL during diurnal and menstrual cycles in young women. Horm Res 2009; 71: 285-289
  • 14 Chiu KM, Ju J, Mayes D et al. Changes in bone resorption during the menstrual cycle. J Bone Miner Res 1999; 14: 609-615
  • 15 Gass ML, Kagan R, Kohles JD et al. Bone turnover marker profile in relation to the menstrual cycle of premenopausal healthy women. Menopause 2008; 15: 667-675
  • 16 Prior JC. Progesterone as a bone-trophic hormone. Endocr Rev 1990; 11: 386-398
  • 17 Ouyang F, Wang X, Arguelles L et al. Menstrual cycle lengths and bone mineral density: a cross-sectional, population-based study in rural Chinese women ages 30–49 years. Osteoporos Int 2007; 18: 221-233
  • 18 Waugh EJ, Polivy J, Ridout R et al. A prospective investigation of the relations among cognitive dietary restraint, subclinical ovulatory disturbances, physical activity, and bone mass in healthy young women. Am J Clin Nutr 2007; 86: 1791-1801
  • 19 Waller K, Reim J, Fenster L et al. Bone mass and subtle abnormalities in ovulatory function in healthy women. J Clin Endocrinol Metab 1996; 81: 663-668
  • 20 Bemben DA, Buchanan TD, Bemben MG et al. Influence of type of mechanical loading, menstrual status, and training season on bone density in young women athletes. J Strength Cond Res 2004; 18: 220-226
  • 21 De Souza MJ, Miller BE, Sequenzia LC et al. Bone health is not affected by luteal phase abnormalities and decreased ovarian progesterone production in female runners. J Clin Endocrinol Metab 1997; 82: 2867-2876
  • 22 Lu LJ, Nayeem F, Anderson KE et al. Lean body mass, not estrogen or progesterone, predicts peak bone mineral density in premenopausal women. J Nutr 2009; 139: 250-256
  • 23 Slootweg MC, Ederveen AG, Schot LP et al. Oestrogen and progestogen synergistically stimulate human and rat osteoblast proliferation. J Endocrinol 1992; 133: R5-R8
  • 24 Wei LL, Leach MW, Miner RS et al. Evidence for progesterone receptors in human osteoblast-like cells. Biochem Biophys Res Commun 1993; 195: 525-532
  • 25 Schmidmayr M. Progesteron verstärkt die Differenzierung primärer humaner Osteoblasten in Langzeit-Kulturen. Geburtsh Frauenheilk 2008; 68: 1-6
  • 26 Liang M, Liao EY, Xu X et al. Effects of progesterone and 18-methyl levonorgestrel on osteoblastic cells. Endocr Res 2003; 29: 483-501
  • 27 Oriol B, Seifert-Klauss V. Assisted reproduction and bone. Geburtsh Frauenheilk 2011; 71: 307-308