Subscribe to RSS
DOI: 10.1055/s-0035-1559625
Kortikale Plastizität nach Hörverlust und Cochlea-Implantation
Cortical Plasticity after Loss of Hearing and Cochlear ImplantationPublication History
Publication Date:
19 October 2015 (online)

Zusammenfassung
Das Gehirn bleibt über die gesamte Lebensspanne flexibel. Die Eigenschaft des Zentralnervensystems, sich an verändernde Anforderungen anzupassen, wird auch als neuronale Plastizität bezeichnet. Bei Personen mit einer hochgradigen oder an Taubheit grenzenden Schwerhörigkeit ist die neuronale Plastizität eine wesentliche Voraussetzung für die Hörrehabilitation mit einem Cochlea-Implantat (CI). Nach der Implantation sind Adaptationsleistungen des Zentralnervensystems notwendig, um die neuen, elektrischen Signale eines CIs zu verstehen. Obwohl viele CI-Träger ein gutes Sprachverständnis entwickeln, zeigt sich eine große Variabilität im CI-Anpassungserfolg. Es gibt deutliche Hinweise, dass intermodale Plastizität, insbesondere die Hinzuziehung des auditorischen Kortex für die Verarbeitung von visuellen Informationen, wesentlich zu dieser Variabilität beiträgt. Dieser Artikel gibt einen aktuellen Überblick über die kortikalen Veränderungen bei CI-Patienten. Dabei werden erfahrungsbedingte neuronale Veränderungen vor der Implantation (sensorische Deprivation) und danach (elektrisches Hören mit CI) vorgestellt und anhand relevanter Studienergebnisse aufgezeigt, dass die Auswirkungen von Plastizität im Hinblick auf die Restitution der Hörfunktion nicht nur adaptiv, sondern auch maladaptiv sein können. Ob die maladaptive Plastizität bei CI-Trägern durch therapeutische Strategien gezielt beeinflusst werden kann, ist bislang unklar. Um die Therapiemöglichkeiten bei CI-Trägern weiter zu optimieren, sind zukünftige Studien notwendig. Ein besseres Verständnis von adaptiver und maladaptiver Plastizität erlaubt es langfristig, therapeutische Strategien zu entwickeln, welche die kortikale Plastizität gezielt beeinflussen und so zu einer Optimierung des CI-Anpassungserfolgs beitragen.
Abstract
A fundamental characteristic of the human brain is its ability to be flexible throughout the entire lifespan. This ability for experience-related changes is referred to as neuronal plasticity and allows the brain to adequately adapt in response to the changing environment. Rehabilitation of hearing with a cochlear implant (CI) would not be possible without the capacity of the central nervous system to change as a result of experience. CIs can partly restore hearing in individuals suffering from profound hearing loss. However, electrical hearing with a CI is highly unnatural and impoverished, and cortical adaptation is required to interpret the CI input as meaningful sounds. Although many CI users develop good speech intelligibility, speech performance outcomes remain highly variable in CI users. There is first evidence for cross-modal plasticity to be one factor contributing to this variability, in particular the reorganization of the auditory cortex by the visual modality. This review provides an overview of the literature on cortical changes in CI users, considering experience-dependent neuronal changes before (sensory deprivation) and after (electrical hearing) cochlear implantation. In sum, the results of previous studies suggest that plasticity can have both adaptive and maladaptive effects on the restoration of hearing. Whether the maladaptive plasticity can be addressed by targeted rehabilitation strategies is still not clear. Additional research is needed in order to further optimize auditory rehabilitation in CI users. In the long-term, a better understanding of adaptive and maladaptive plasticity allows the development of effective clinical therapies that can exert a targeted influence on cortical plasticity. This contributes to the long-term goal of a more complete restoration of hearing with a CI.
-
Literatur
- 1 Armstrong BA, Neville HJ, Hillyard SA. et al. Auditory deprivation affects processing of motion, but not color. Cognitive Brain Research 2002; 14: 422-434 http://doi.org/10.1016/S0926-6410(02)00211-2
- 2 Auer ET, Bernstein LE, Sungkarat W. et al. Vibrotactile activation of the auditory cortices in deaf versus hearing adults. Neuroreport 2007; 18: 645-648 http://doi.org/10.1097/WNR.0b013e3280d943b9
- 3 Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Computation 1995; 7: 1129-1159 http://doi.org/10.1162/neco.1995.7.6.1129
- 4 Bottari D, Heimler B, Caclin A. et al. Visual change detection recruits auditory cortices in early deafness. NeuroImage 2014; 94: 172-184 http://doi.org/10.1016/j.neuroimage.2014.02.031
- 5 Bottari D, Nava E, Ley P. et al. Enhanced reactivity to visual stimuli in deaf individuals. Restorative Neurology and Neuroscience 2010; 28: 167-179 http://doi.org/10.3233/RNN-2010-0502
- 6 Boyke J, Driemeyer J, Gaser C. et al. Training-induced brain structure changes in the elderly. The Journal of Neuroscience 2008; 28: 7031-7035 http://doi.org/10.1523/JNEUROSCI.0742-08.2008
- 7 Campbell J, Sharma A. Cross-modal re-organization in adults with early stage hearing loss. PLoS ONE 2014; 9:http://doi.org/10.1371/journal.pone.0090594
- 8 Carcea I, Froemke RC. Cortical plasticity, excitatory-inhibitory balance, and sensory perception. Progress in Brain Research 2013; 207: 65-90 http://doi.org/10.1016/B978-0-444-63327-9.00003-5
- 9 Chen Q, Zhang M, Zhou X. Effects of spatial distribution of attention during inhibition of return (IOR) on flanker interference in hearing and congenitally deaf people. Brain Research 2006; 1109: 117-127 http://doi.org/10.1016/j.brainres.2006.06.043
- 10 Chlubnová J, Kremláček J, Kubová Z. et al. Visual evoked potentials and event related potentials in congenitally deaf subjects. Physiological Research 2005; 54: 577-583
- 11 Dormal G, Collignon O. Functional selectivity in sensory-deprived cortices. Journal of Neurophysiology 2011; 105: 2627-2630 http://doi.org/10.1152/jn.00109.2011
- 12 Doucet ME, Bergeron F, Lassonde M. et al. Cross-modal reorganization and speech perception in cochlear implant users. Brain 2006; 129: 3376-3383 http://doi.org/10.1093/brain/awl264
- 13 Drennan WR, Rubinstein JT. Music perception in cochlear implant users and its relationship with psychophysical capabilities. Journal of Rehabilitation Research and Development 2008; 45: 779-789 http://doi.org/10.1682/JRRD.2007.08.0118
- 14 Dye MWG, Hauser PC, Bavelier D. Is visual selective attention in deaf individuals enhanced or deficient? The case of the useful field of view. PLoS ONE 2009; 4:http://doi.org/10.1371/journal.pone.0005640
- 15 Engineer ND. Environmental Enrichment Improves Response Strength, Threshold, Selectivity, and Latency of Auditory Cortex Neurons. Journal of Neurophysiology 2004; 92: 73-82 http://doi.org/10.1152/jn.00059.2004
- 16 Finney EM, Clementz BA, Hickok G. et al. Visual stimuli activate auditory cortex in deaf subjects: evidence from MEG. Neuroreport 2003; 14: 1425-1427 http://doi.org/10.1097/00001756-200308060-00004
- 17 Finney EM, Fine I, Dobkins KR. Visual stimuli activate auditory cortex in the deaf. Nature Neuroscience 2001; 4: 1171-1173 http://doi.org/10.1038/nn763
- 18 Fu QJ, Galvin JJ. Maximizing cochlear implant patients’ performance with advanced speech training procedures. Hearing Research 2008; 242: 198-208 http://doi.org/10.1016/j.heares.2007.11.010
- 19 Giraud AL, Truy E, Frackowiak R. Imaging plasticity in cochlear implant patients. Audiology and Neuro-Otology 2001; 6: 381-393 http://doi.org/10.1159/000046847
- 20 Giraud AL, Lee HJ. Predicting cochlear implant outcome from brain organisation in the deaf. Restorative Neurology and Neuroscience 2007; 25: 381-390
- 21 Globus A, Rosenzweig MR, Bennett EL. et al. Effects of differential experience on dendritic spine counts in rat cerebral cortex. Journal of Comparative and Physiological Psychology 1973; 82: 175-181 http://doi.org/10.1037/h0033910
- 22 Gougoux F, Belin P, Voss P. et al. Voice perception in blind persons: A functional magnetic resonance imaging study. Neuropsychologia 2009; 47: 2967-2974 http://doi.org/10.1016/j.neuropsychologia.2009.06.027
- 23 Green KMJ, Ramsden RT, Julyan PJ. et al. Cortical plasticity in the first year after cochlear implantation. Cochlear Implants International 2008; 9: 103-117 http://doi.org/10.1002/cii.358
- 24 Hassanzadeh S. Outcomes of cochlear implantation in deaf children of deaf parents: comparative study. The Journal of Laryngology & Otology 2012; 126: 989-994 http://doi.org/10.1017/S0022215112001909
- 25 Hauthal N, Sandmann P, Debener S. et al. Visual movement perception in deaf and hearing individuals. Advances in Cognitive Psychology 2013; 9: 53-61 http://doi.org/10.2478/V10053-008-0131-Z
- 26 Heimler B, Weisz N, Collignon O. Revisiting the adaptive and maladaptive effects of crossmodal plasticity. Neuroscience 2014; 283: 44-63 http://doi.org/10.1016/j.neuroscience.2014.08.003
- 27 Henshaw H, Ferguson MA. Efficacy of Individual Computer-Based Auditory Training for People with Hearing Loss: A Systematic Review of the Evidence. PLoS ONE 2013 http://doi.org/10.1371/journal.pone.0062836
- 28 Holt RF, Svirsky MA. An exploratory look at pediatric cochlear implantation: is earliest always best?. Ear and Hearing 2008; 29: 492-511 http://doi.org/10.1097/AUD.0b013e31816c409f
- 29 Jakkamsetti V, Chang KQ, Kilgard MP. Reorganization in processing of spectral and temporal input in the rat posterior auditory field induced by environmental enrichment. Journal of Neurophysiology 2012 http://doi.org/10.1152/jn.01057.2010
- 30 Jäncke L. The plastic human brain. Restorative Neurology and Neuroscience 2009; 27: 521-538 http://doi.org/10.3233/RNN-2009-0519
- 31 Katz HB, Davies CA. Effects of differential environments on the cerebral anatomy of rats as a function of previous and subsequent housing conditions. Experimental Neurology 1984; 83: 274-287 http://doi.org/10.1016/S0014-4886(84)90098-0
- 32 Klinge C, Eippert F, Röder B. et al. Corticocortical connections mediate primary visual cortex responses to auditory stimulation in the blind. The Journal of Neuroscience 2010; 30: 12798-12805 http://doi.org/10.1523/JNEUROSCI.2384-10.2010
- 33 Kolb B, Gibb R, Robinson TE. Brain plasticity and behavior. Current Directions in Psychological Science 2003 http://doi.org/10.1111/1467-8721.01210
- 34 Kral A, Sharma A. Developmental neuroplasticity after cochlear implantation. Trends in Neurosciences 2012 http://doi.org/10.1016/j.tins.2011.09.004
- 35 Krueger B, Joseph G, Rost U. et al. Performance groups in adult cochlear implant users: speech perception results from 1984 until today. Otology & Neurotology 2008; 29: 509-512 http://doi.org/10.1097/MAO.0b013e318171972f
- 36 Lazard DS, Lee HJ, Gaebler M. et al. Phonological processing in post-lingual deafness and cochlear implant outcome. NeuroImage 2010; 49: 3443-3451 http://doi.org/10.1016/j.neuroimage.2009.11.013
- 37 Lazard DS, Vincent C, Venail F. et al. Pre-, Per- and Postoperative Factors Affecting Performance of Postlinguistically Deaf Adults Using Cochlear Implants: A New Conceptual Model over Time. PLoS ONE 2012; 7: 1-11 http://doi.org/10.1371/journal.pone.0048739
- 38 Lee DS, Lee JS, Oh SH. et al. Cross-modal plasticity and cochlear implants. Nature 2001; 409: 149-150 http://doi.org/10.1038/35051650
- 39 Lee HJ, Giraud AL, Kang E. et al. Cortical activity at rest predicts cochlear implantation outcome. Cerebral Cortex 2007; 17: 909-917 http://doi.org/10.1093/cercor/bhl001
- 40 Lenarz M, Sönmez H, Joseph G. et al. Cochlear implant performance in geriatric patients. Laryngoscope 2012; 122: 1361-1365 http://doi.org/10.1002/lary.23232
- 41 Levänen S, Hamdorf D. Feeling vibrations: Enhanced tactile sensitivity in congenitally deaf humans. Neuroscience Letters 2001; 301: 75-77 http://doi.org/10.1016/S0304-3940(01)01597-X
- 42 Levänen S, Jousmäki V, Hari R. Vibration-induced auditory-cortex activation in a congenitally deaf adult. Current Biology 1998; 8: 869-872 http://doi.org/10.1016/S0960-9822(07)00348-X
- 43 Lomber SG, Meredith MA, Kral A. Cross-modal plasticity in specific auditory cortices underlies visual compensations in the deaf. Nature Neuroscience 2010; 13: 1421-1427 http://doi.org/10.1038/nn.2653
- 44 Lore W, Song S. Central and peripheral visual processing in hearing and nonhearing individuals. Bulletin of the Psychonomic Society 1991; 29: 437-440
- 45 Lyness CR, Woll B, Campbell R et al. How does visual language affect crossmodal plasticity and cochlear implant success? Neuroscience and Biobehavioral Reviews 2013 http://doi.org/10.1016/j.neubiorev.2013.08.011
- 46 McConkey Robbins A, Koch DB, Osberger MJ. et al. Effect of age at cochlear implantation on auditory skill development in infants and toddlers. Archives of Otolaryngology – Head & Neck Surgery 2004; 130: 570-574 http://doi.org/10.1001/archotol.130.5.570
- 47 Meredith MA, Kryklywy J, McMillan AJ. et al. Crossmodal reorganization in the early deaf switches sensory, but not behavioral roles of auditory cortex. Proceedings of the National Academy of Sciences of the United States of America 2011; 108: 8856-8861 http://doi.org/10.1073/pnas.1018519108
- 48 Münte TF, Altenmüller E, Jäncke L. The musician’s brain as a model of neuroplasticity. Nature Reviews. Neuroscience 2002; 3: 473-478 http://doi.org/10.1038/nrn843
- 49 Näätänen R, Picton T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology 1987; 24: 375-425 http://doi.org/10.1111/j.1469-8986.1987.tb00311.x
- 50 Nadol JB, Young YS, Glynn RJ. Survival of spiral ganglion cells in profound sensorineural hearing loss: Implications for cochlear implantation. Annals of Otology, Rhinology and Laryngology 1989; 98: 411-416
- 51 Naito Y, Hirano S, Fujiki N. et al. Development and plasticity of the auditory cortex in cochlear implant users: a follow-up study by positron emission tomography. Advances in Oto-Rhino-Laryngology 2000; 57: 55-59
- 52 Neville HJ, Lawson D. Attention to central and peripheral visual space in a movement detection task: an event-related potential and behavioral study. II. Congenitally deaf adults. Brain Research 1987; 405: 268-283 http://doi.org/10.1016/0006-8993(87)90296-4
- 53 Pantev C, Dinnesen A, Ross B. et al. Dynamics of auditory plasticity after cochlear implantation: A longitudinal study. Cerebral Cortex 2006; 16: 31-36 http://doi.org/10.1093/cercor/bhi081
- 54 Pavani F, Bottari D. Visual abilities in individuals with profound deafness: A critical review. In: Murray MM, Wallace MT. (Eds.) The neural bases of multisensory processes. 2012: 423-448 Boca Raton (NY): CRC Press;
- 55 Rauschecker JP, Korte M. Auditory compensation for early blindness in cat cerebral cortex. The Journal of Neuroscience 1993; 13: 4538-4548
- 56 Rebillard G, Carlier E, Rebillard M. et al. Enhancement of visual responses on the primary auditory cortex of the cat after an early destruction of cochlear receptors. Brain Research 1977; 129: 162-164 http://doi.org/10.1016/0006-8993(77)90980-5
- 57 Rouger J, Lagleyre S, Démonet JF. et al. Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients. Human Brain Mapping 2012; 33: 1929-1940 http://doi.org/10.1002/hbm.21331
- 58 Rouger J, Lagleyre S, Fraysse B. et al. Evidence that cochlear-implanted deaf patients are better multisensory integrators. Proceedings of the National Academy of Sciences of the United States of America 2007; 104: 7295-7300 http://doi.org/10.1073/pnas.0609419104
- 59 Sadato N, Pascual-Leone A, Grafman J. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 1996; 380: 526-528 http://doi.org/10.1038/380526a0
- 60 Sandmann P, Dillier N, Eichele T. et al. Visual activation of auditory cortex reflects maladaptive plasticity in cochlear implant users. Brain 2012; 135: 555-568 http://doi.org/10.1093/brain/awr329
- 61 Sandmann P, Kegel A, Eichele T. et al. Neurophysiological evidence of impaired musical sound perception in cochlear-implant users. Clinical Neurophysiology 2010; 121: 2070-2082 http://doi.org/10.1016/j.clinph.2010.04.032
- 62 Sandmann P, Plotz K, Hauthal N . et al. Rapid bilateral improvement in auditory cortex activity in postlingually deafened adults following cochlear implantation. Clinical Neurophysiology 2015; 594-607 http://doi.org/10.1016/j.clinph.2014.06.029
- 63 Särkämö T, Pihko E, Laitinen S. et al. Music and speech listening enhance the recovery of early sensory processing after stroke. Journal of Cognitive Neuroscience 2010; 22: 2716-2727 http://doi.org/10.1162/jocn.2009.21376
- 64 Särkämö T, Tervaniemi M, Laitinen S. et al. Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain 2008; 131: 866-876 http://doi.org/10.1093/brain/awn013
- 65 Sharma A, Dorman MF, Kral A. The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants. Hearing Research 2005; 203: 134-143 http://doi.org/10.1016/j.heares.2004.12.010
- 66 Sharma A, Gilley PM, Dorman MF. et al. Deprivation-induced cortical reorganization in children with cochlear implants. International Journal of Audiology 2007; 46: 494-499 http://doi.org/10.1080/14992020701524836
- 67 Sirevaag AM, Greenough WT. Differential rearing effects on rat visual cortex synapses. III. Neuronal and glial nuclei, boutons, dendrites, and capillaries. Brain Research 1987; 424: 320-332 http://doi.org/10.1080/02640410400021310
- 68 Tremblay K, Kraus N, McGee T. et al. Central auditory plasticity: changes in the N1-P2 complex after speech-sound training. Ear and Hearing 2001; 22: 79-90 http://doi.org/10.1097/00003446-200104000-00001
- 69 Tremblay K, Ross B. Effects of age and age-related hearing loss on the brain. Journal of Communication Disorders 2007; 40: 305-312 http://doi.org/10.1016/j.jcomdis.2007.03.008
- 70 Volkmar FR, Greenough WT. Rearing complexity affects branching of dendrites in the visual cortex of the rat. Science 1972; 176: 1445-1447 http://doi.org/10.1126/science.176.4042.1445