Subscribe to RSS
DOI: 10.1055/s-0035-1560183
Regioselective C2- and C8-Acylation of 5,11-Dihydroindolo[3,2-b]carbazoles and the Synthesis of Their 2,8-Bis(quinoxalinyl) Derivatives
Publication History
Received: 20 June 2015
Accepted after revision: 27 July 2015
Publication Date:
27 August 2015 (online)
Abstract
An efficient approach for the double acetylation of 5,11-dihexyl-6,12-di(hetero)aryl-substituted 5,11-dihydroindolo[3,2-b]carbazoles with acetic anhydride in the presence of boron trifluoride etherate has been developed, thus affording the corresponding 2,8-diacetyl derivatives in good yields. A similar acylation has been shown to occur by the reaction of anhydrides of other carboxylic acids. Oxidation of the obtained 2,8-diacetyl derivatives with selenium dioxide takes place on heating or under microwave irradiation, thus resulting in the formation of the corresponding 2,8-diglyoxals. The latter proved to react with aromatic o-diamines to afford new indolo[3,2-b]carbazoles bearing quinoxalinyl fragments at C-2 and C-8. Major optical properties of quinoxaline-containing indolo[3,2-b]carbazoles have been measured.
Key words
5,11-dihydroindolo[3,2-b]carbazoles - acylation - 2-arylglyoxals - quinoxalines - ladder-type heteroacenesSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560183.
- Supporting Information
-
References
- 1 Klauk H. Organic Electronics II: More Materials and Applications. Wiley-VCH; Weinheim: 2012
- 2a Duong HM, Bendikov M, Steiger D, Zhang Q, Sonmez G, Yamada J, Wudl F. Org. Lett. 2003; 5: 4433
- 2b Anthony JE. Chem. Rev. 2006; 106: 5028
- 2c Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
- 2d Xiao JC, Duong HM, Liu Y, Shi WX, Ji L, Li G, Li S, Liu X.-W, Ma J, Wudl F, Zhang Q. Angew. Chem. Int. Ed. 2012; 51: 6094
- 2e Zou Y, Zou J, Ye T, Li H, Yang C, Wu H, Ma D, Qin J, Cao Y. Adv. Funct. Mater. 2013; 23: 1781
- 3a Zhu M, Yang C. Chem. Soc. Rev. 2013; 42: 4963
- 3b Liu ZY, Xiao JC, Fu Q, Feng HR, Zhang XM, Ren TJ, Wang S, Ma D, Wang X, Chen H. ACS Appl. Mater. Inter. 2013; 5: 11136
- 4a Wu W, Liu Y, Zhu D. Chem. Soc. Rev. 2010; 39: 1489
- 4b Watanabe M, Chen KY, Chang YJ, Chow TJ. Acc. Chem. Res. 2013; 46: 1606
- 4c Wang M, Li J, Zhao GY, Wu QH, Huang YG, Hu WP, Gao X, Li H, Zhu D. Adv. Mater. 2013; 25: 2229
- 5a Jiang Y, Hong S, Oh JH, Mondal R, Okamoto T, Verploegen E, Toney MF, McGehee MD, Bao Z. J. Mater. Chem. 2012; 22: 4356
- 5b Lin YZ, Li YF, Zhan XW. Chem. Soc. Rev. 2012; 41: 4245
- 5c Brabec C, Scherf U, Dyakonov V. Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies. Wiley-VCH; Weinheim: 2014. 2nd ed
- 6a Kirkus M, Grazulevicius JV, Grigalevicius S, Gub R, Dehaen W, Jankauskas V. Eur. Polymer J. 2009; 45: 410
- 6b Lengvinaite S, Grazulevicius JV, Grigalevicius S, Gub R, Dehaen W, Jankauskas V, Zhang B, Xie Z. Dyes Pigments 2010; 85: 183
- 6c Simokaitiene J, Stanislovaityte E, Grazulevicius JV, Jankauskas V, Gu R, Dehaen W, Hung YC, Hsu CP. J. Org. Chem. 2012; 77: 4924
- 7a Boudreault PT, Wakim S, Tang ML, Tao Y, Bao Z, Leclerc M. J. Mater. Chem. 2009; 19: 2921
- 7b Boudreault PT, Virkar AA, Bao Z, Leclerc M. Org. Electron. 2010; 11: 1649
- 8a Zhang X, Wang Z.-S, Cui Y, Koumura N, Furube A, Hara K. J. Phys. Chem. C 2009; 113: 13409
- 8b Cai SY, Tian GJ, Li X, Su JH, Tian H. J. Mater. Chem. A 2013; 1: 11295
- 9a Wakim S, Bouchard J, Simard M, Drolet N, Tao Y, Leclerc M. Chem. Mater. 2004; 16: 4386
- 9b Wu YL, Li YN, Gardner S, Ong BS. J. Am. Chem. Soc. 2005; 127: 614
- 9c Guo Y, Zhao H, Yu G, Di C, Liu W, Jiang S, Yan S, Wang C, Zhang H, Sun X, Tao X, Liu Y. Adv. Mater. 2008; 20: 4835
- 10 Bjeldanes L, Kim J, Grose K, Bartholomew J, Bradfield C. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 9543
- 11a Rannug U, Rannug A, Sjöberg U, Li H, Westerholm R, Bergman J. J. Chem. Biol. 1995; 2: 841
- 11b Wei Y, Helleberg H, Rannug U, Rannug A. Chem. Biol. Interact. 1998; 110: 39
- 12 Irlinger B, Bartsch A, Krämer H.-J, Mayser P, Steglich W. Helv. Chim. Acta 2005; 88: 1472
- 13 Kober U, Knölker H.-J. Synlett 2015; 26: 1549
- 14a Tholander J, Bergman J. Tetrahedron 1999; 55: 12577
- 14b Yudina LN, Bergman J. Tetrahedron 2003; 59: 1265
- 15a Pindur U, Müller J. Arch. Pharm. (Weinheim) 1987; 320: 280
- 15b Wahlstroem N, Stensland B, Bergman J. Synthesis 2004; 1187
- 15c Gu R, Hameurlaine A, Dehaen W. J. Org. Chem. 2007; 72: 7207
- 15d Deb ML, Bhuyan PJ. Synlett 2008; 325
- 16a Bergman J, Hogberg S, Lindstrom JO. Tetrahedron 1970; 26: 3347
- 16b Black DS, Ivory AJ, Kumar N. Tetrahedron 1995; 51: 11801
- 16c Niebel C, Lokshin V, Ben-Asuly A, Marine W, Karapetyan A, Khodorkovsky V. New J. Chem. 2010; 34: 1243
- 16d Van Snick S, Dehaen W. Org. Biomol. Chem. 2012; 10: 79
- 17 Rieche A, Gross H, Höft E. Chem. Ber. 1960; 93: 88
- 18 Irgashev RA, Teslenko AYu, Zhilina EF, Schepochkin AV, El’tsov OS, Rusinov GL, Charushin VN. Tetrahedron 2014; 70: 4685
- 19 Morrill LC, Ledingham LA, Couturier J.-P, Bickel J, Harper AD, Fallan C, Smith AD. Org. Biomol. Chem. 2014; 12: 624
- 20a Thomas KR. J, Velusamy M, Lin JT, Chuen C.-H, Tao Y.-T. Chem. Mater. 2005; 17: 1860
- 20b Alizadeh R, Ghaemy M, Bazzar M, Nasr FH. J. Appl. Polym. Sci. 2014; 40129
- 21 Dubey P, Tripathi MK, Sonkar SK. RSC Adv. 2014; 4: 5838